Aims and scope

Annals of Child Neurology is an interdisciplinary peer-reviewed biomedical journal publishing articles in the fields of child neurology, pediatric neurosurgery, pediatric neuroradiology, child psychiatry, pediatric neuropsychology, developmental and behavioral pediatrics, pediatric neuroscience, and developmental neurobiology. The aims of Annals of Child Neurology are to contribute to the advancements in the fields of pediatric neurology through the scientific reviews and interchange of all of its achievements. In addition, genome research, epidemiology, public education and clinical practice guidelines in each country are welcomed for publication.

Focusing on the needs of neurologic patients from birth to age 18 years, Annals of Child Neurology covers topics ranging from assessment of new and changing therapies and procedures; diagnosis, evaluation, and management of neurologic, psychiatric, and neurodevelopmental disorders; and pathophysiology of central nervous system diseases.

Area of specific interest include the following:
- behavioral neurology & neuropsychiatry, clinical neuropsychology, epilepsy, headache medicine, neurocritical care, neurodevelopmental disabilities, neurogenetics, neuromaging, neurovascular medicine, neuroimmunology and inflammation, neuro-oncology, sleep medicine, vascular neurology, as well as other diseases affecting the developing nervous system.

Acceptance for publication of submitted manuscript is determined by the editors and peer reviewers, who are experts in their specific fields of pediatric neurology. The journal includes the following sections: original articles, reviews, letters to the editor. The editorial board invites articles from international studies or clinical, translational, and basic research groups. Supplements can be published when they are required.

Open access

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Original articles

33 Clinical Features and Treatment Efficacy in CDKL5 Mutation-Related Epileptic Encephalopathy in the Infant
Chung Mo Koo, Se Hee Kim, Heung Dong Kim, Joon Soo Lee, Jong Rak Choi, Seung-Tae Lee, Hoon-Chul Kang

38 Association of Tumor Necrosis Factor-α Gene Promotor Variant, Not Interleukin-10, with Febrile Seizures and Genetic Epilepsy with Febrile Seizure Plus
Jieun Choi, Sun Ah Choi, Soo Yeon Kim, Hunmin Kim, Byung Chan Lim, Hee Hwang, Jong Hee Chae, Ki Joong Kim, Sohee Oh, Jeon-Soo Shin

46 Treatment Response to Acquired Aphasia with Seizures and Prognosis through Electroencephalogram on Cognitive Function
Chung Mo Koo, Se Hee Kim, Heung Dong Kim, Joon Soo Lee, Hoon-Chul Kang

51 Reconsideration of Vigabatrin Effect in Infantile Spasms Treatment
Da Hye Yoon, Ja Un Moon, Joo Young Lee, In Goo Lee

Letters to the editor

57 Antrochoanal Polyp with Severe Headache in a Child
Sung Hye Park, Na Hyun Lee, Young Se Kwon

60 Rotavirus Infection-Associated Posterior Reversible Encephalopathy Syndrome
Da Jeong Lee, Jon Soo Kim
Clinical Features and Treatment Efficacy in CDKL5 Mutation-Related Epileptic Encephalopathy in the Infant

Chung Mo Koo, MD¹, Se Hee Kim, MD¹, Heung Dong Kim, MD¹, Joon Soo Lee, MD¹, Jong Rak Choi, MD², Seung-Tae Lee, MD², Hoon-Chul Kang, MD¹

¹Department of Pediatrics, Severance Children’s Hospital, Yonsei University College of Medicine, Seoul, Korea
²Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea

Purpose: Mutations in the cyclin-dependent kinase-like 5 (CDKL5) gene are associated with epileptic encephalopathy and severe cognitive impairment. We aim to characterize the association between this gene and treatment efficacy.

Methods: We retrospectively analyzed 10 patients who were treated at Severance Children’s Hospital for epileptic encephalopathy who were subsequently diagnosed with a CDKL5 mutation using next-generation sequencing.

Results: Electroencephalography (EEG) results showed generalized pattern abnormalities in 60% (6/10) of patients with CDKL5 mutations. We analyzed the effects of three treatments, namely antiepileptic drugs (AEDs), ketogenic diet (KD), and steroids. A more than 50% reduction in seizures was observed in 12% (1/8) of patients treated with clobazam. KD treatment proved ineffective in most cases. In addition, a more than 50% reduction in seizures was observed in 57% (4/7) of patients treated with steroids. EEG analysis of patients treated effectively with steroids revealed that 75% (3/4) showed hypsarrhythmia and 25% (1/4) showed focal epileptiform.

Conclusion: In this study, as in other studies, AEDs and KD did not effectively control seizures in most patients with a CDKL5 mutation. However, steroid therapy reduced the frequency of seizures in patients who also exhibited hypsarrhythmia. This suggests that steroid treatment is helpful in cases of hypsarrhythmia with CDKL5 mutations.

Keywords: Spasms, infantile; CDKL5 deficiency disorder; Epilepsy; Epileptic encephalopathy

Introduction

Mutations in the cyclin-dependent kinase-like 5 (CDKL5) gene are associated with severe cognitive impairments and early epileptic encephalopathy, such as infantile spasms. These mutations are mainly expressed in women [1,2]. Accordingly, the CDKL5 mutation was found in two female patients with severe cognitive impairment with an infantile spasm in 2003 [1]. The CDKL5 mutation has been reported in atypical Rett syndrome patients who report having seizures before 6 months of age [2,3]. However, unlike patients with typical Rett syndrome who had epileptic seizures before 3 years of age, those with CDKL5 mutations, on average, reported seizures 4 months earlier, and in many cases, lacked typical Rett syndrome features [3-5]. In 2013, Fehr et al. [6] reported that the CDKL5 mutation should be classified as an independent early epileptic encephalopathy, not atypical Rett syndrome. Seizures...
with CDKL5 mutations in early infancy are typically characterized by tonic seizures or muscle contractions with vibration, followed by a clonic phase with a series of spasms that gradually turn into rhythmic distal myoclonic jerks [7]. There is, however, no characteristic electroencephalography (EEG) pattern in patients with a CDKL5 mutation [7-10]; EEG can present, initially, as normal background activity in patients with this mutation [9,10]. Although patients with CDKL5 mutations show a transient response to various antiepileptic drugs (AEDs), they are generally difficult to treat and are unresponsive to most intractable epilepsy treatment [11].

The purpose of this study was to analyze the characteristics of CDKL5 mutations in patients from a single center, as well as to confirm the efficacy of therapy.

Materials and Methods

We retrospectively analyzed 10 patients with CDKL5 pathogenic mutations, diagnosed at Severance Children’s Hospital, Seoul, South Korea. Patients were reassessed at every outpatient clinic. The patient’s response to the drug was categorized into four groups: (1) patient was seizure free for more than 6 months; (2) seizures were reduced by more than 50%; (3) seizures were reduced by less than 50%; or (4) no effect. If the patient does not affect the clinical symptoms, the drug or treatment method will be added or changed. In this case, we have assessed the treatment methods and drugs we want to investigate. In this study, when steroid was chosen as treatment options, we prescribed prednisolone. It was used at 40 to 60 mg/day for 2 weeks and then tapered off for 2 weeks [12,13].

All children underwent several analyses, including next-generation genetic sequencing, routine EEG recordings, and video EEG recordings. The EEG terminology used in this study is based on a paper published by Kane et al. [14] in 2017.

Genomic DNA extracted from all individual samples was used for library preparation and target capture using custom panels targeting candidate genes. The databases used for analysis and mutation analysis include online Mendel inheritance, Human Gene Mutation Database, ClinVar, dbSNP, 1000 Genome, Exome Aggregation Consortium, Exome Sequencing Project, and Korean Reference Genome Database. All pathogenic and possible pathogenic variants were identified by Sanger sequencing. All patients underwent video EEG recording at the first evaluation and routine EEG recording at the follow-up evaluation. Routine EEG recordings were performed for an average of 30 minutes and video EEG recordings were performed for more than 4 hours. Scalp electrodes were placed according to the International 10–20 system.

This study was approved by the Institutional Review Board of Severance Hospital (4-2016-0080). Informed consent was waived due to the retrospective nature of the study.

Results

We identified a CDKL5 pathogenic mutation in 10 patients (eight women, two men). Amongst all patients, the average age at seizure onset was 3.6 months (range, 0.6 to 11). Six patients with the mutation demonstrated generalized abnormalities in the first EEG recording; two patients showed hypsarrhythmic patterns, one showed EEG suppression patterns, two patients showed generalized sharp and wave discharges, and one patient showed generalized slow and disorganized background abnormalities. In total, four patients showed hypsarrhythmic patterns during the study period. Three patients demonstrated regional epileptiform discharges and one patient demonstrated regional paroxysmal fast activities on EEG. All patients exhibited motor seizures and six patients exhibited spasms. One of the patients who exhibited spasms did not show subsequent motor seizure. Brain magnetic resonance imaging data appeared normal in most cases, and we found no focal abnormalities. There was a significant delay in cognition in nine of the 10 patients who underwent cognitive testing. Details on genetic and clinical features of patients can be found in Tables 1 and 2.

We compared the effects of AEDs such as valproic acid (VPA), clobazam (CLB), and vigabatrin (VGB) on seizures. Additionally, we evaluated the effects of steroids and ketogenic diets (KDs) on seizures. Eight of the 10 patients used VPA, six of whom reported no effects, and two reported a less than 50% reduction in the frequency of seizures. Nine patients used CLB, four of whom had a less than 50% seizure reduction, three had no effect, and one had a more than 50% seizure reduction. Seven patients used VGB, five of whom reported no effects, and two reported a less than 50% re-

Table 1. Genetic features of 10 patients with CDKL5 mutation

<table>
<thead>
<tr>
<th>Pt</th>
<th>Inheritance</th>
<th>CDS/amino acid change</th>
<th>Type of mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>c.2354dupA, p.Lys786GlufsTer15</td>
<td>Frameshift duplication</td>
</tr>
<tr>
<td>2</td>
<td>De novo</td>
<td>c.511T>A, p.Tyr171Asn</td>
<td>Missense</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>c.978-1G>A</td>
<td>Splicing</td>
</tr>
<tr>
<td>4</td>
<td>De novo</td>
<td>c.282+1G>A</td>
<td>Splicing</td>
</tr>
<tr>
<td>5</td>
<td>De novo</td>
<td>c.175C>T, p.Arg59Ter</td>
<td>Nonsense</td>
</tr>
<tr>
<td>6</td>
<td>De novo</td>
<td>c.513C>T, p.Tyr171Ter</td>
<td>Nonsense</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>c.458A>T, p.Asp153Val</td>
<td>Missense</td>
</tr>
<tr>
<td>8</td>
<td>De novo</td>
<td>c.145+2T>A</td>
<td>Splicing</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>c.403+1G>A</td>
<td>Splicing</td>
</tr>
<tr>
<td>10</td>
<td>De novo</td>
<td>c.146-1G>T</td>
<td>-</td>
</tr>
</tbody>
</table>
duction in the frequency of seizures. Eight patients were on KDs, seven of whom reported no effect and only one of whom had a less than 50% reduction in the frequency of seizures (Table 3). In addition, seven patients used steroids, one of whom reported no seizures for more than 6 months, and three of whom reported a reduction in frequency of seizures by more than 50%. EEG results in the patient who remained seizure-free for more than 6 months showed regional epileptiform when seizures first occurred (age, 0.6 months), but no slowing pattern. These three patients under steroids with a reduction of more than 50% in the frequency of seizures showed hypsarrhythmia on EEG.

Discussion

Patients with a CDKL5 mutation often present with epileptic encephalopathy, which is a challenging condition to treat, and has been reported to be only temporarily affected by AEDs [11,15,16]. Therefore, the treatment goal for these patients involves improving their quality of life and achieving, at minimum, a slight reduction in the frequency of seizures [11]. CDKL5 mutation is a causative mutation of infantile spasm, so treatment with steroid has also been tried in some cases [12,13,15]. One study reported that seizures were not completely abolished in patients with CDKL5 mutations, but KD and some drugs, such as VGB, have helped to reduce the frequency of seizures [15,16].

<table>
<thead>
<tr>
<th>Pt</th>
<th>Sex</th>
<th>sz onset age (mo)</th>
<th>ECD</th>
<th>sz type</th>
<th>1st EEG finding</th>
<th>Age at 1st Hyps (mo)</th>
<th>Brain MRI</th>
<th>Cognitive function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>11</td>
<td>WS, LGS</td>
<td>Spasm</td>
<td>Generalized sharp and wave discharges</td>
<td>19</td>
<td>NL</td>
<td>Significantly delayed</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>3</td>
<td>WS</td>
<td>Spasm</td>
<td>Normal</td>
<td>-</td>
<td>NL</td>
<td>Significantly delayed</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1.7</td>
<td>EIIE</td>
<td>Myoclonic</td>
<td>Suppression burst</td>
<td>-</td>
<td>NL</td>
<td>Significantly delayed</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>1</td>
<td>WS, LGS</td>
<td>Spasm</td>
<td>Hyps</td>
<td>3</td>
<td>NL</td>
<td>Significantly delayed</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>5</td>
<td>WS, LGS</td>
<td>Spasm</td>
<td>Hyps</td>
<td>5</td>
<td>NL</td>
<td>Significantly delayed</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>5</td>
<td>WS</td>
<td>Spasm</td>
<td>Generalized slow and disorganized background activities</td>
<td>9</td>
<td>NL</td>
<td>Significantly delayed</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>3</td>
<td>LGS</td>
<td>Spasm</td>
<td>Generalized sharp and slow wave</td>
<td>-</td>
<td>Atrophy</td>
<td>Significantly delayed</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>0.6</td>
<td>EME</td>
<td>Myoclonic</td>
<td>Regional sharp wave and regional paroxysmal fast activities</td>
<td>-</td>
<td>NL</td>
<td>Significantly delayed</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>4</td>
<td>Focal epilepsy</td>
<td>Focal motor</td>
<td>Regional slowing</td>
<td>-</td>
<td>Atrophy</td>
<td>Significantly delayed</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>2</td>
<td>Focal epilepsy</td>
<td>GTC</td>
<td>Regional sharp wave discharges</td>
<td>-</td>
<td>NL</td>
<td>-</td>
</tr>
</tbody>
</table>

EEG, electroencephalography; CDKL5, cyclin-dependent kinase-like 5; Pt, patients; sz, seizure; ECD, electroclinical diagnosis; Hyps, hypsarrhythmia; MRI, magnetic resonance imaging; WS, West syndrome; LGS, Lennox-Gastaut syndrome; NL, normal; EIIE, early infantile epileptic encephalopathy; EME, early myoclonic encephalopathy; GTC, generalized tonic-clonic.

<table>
<thead>
<tr>
<th>Pt</th>
<th>Hyps</th>
<th>Generalized Patter EEG</th>
<th>Baseline sz freq</th>
<th>VPA</th>
<th>CLB</th>
<th>VGB</th>
<th>Steroid</th>
<th>KD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>Daily</td>
<td>Less than 50%</td>
<td>No effect</td>
<td>No effect</td>
<td>More than 50%</td>
<td>No effect</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2 times/wk</td>
<td>No effect</td>
<td>Less than 50%</td>
<td>Less than 50%</td>
<td>No effect</td>
<td>No effect</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>+</td>
<td>Daily</td>
<td>Less than 50%</td>
<td>Less than 50%</td>
<td>Less than 50%</td>
<td>-</td>
<td>No effect</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>+</td>
<td>Daily</td>
<td>No effect</td>
<td>Less than 50%</td>
<td>No effect</td>
<td>More than 50%</td>
<td>No effect</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>Daily</td>
<td>No effect</td>
<td>-</td>
<td>Less than 50%</td>
<td>More than 50%</td>
<td>No effect</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>+</td>
<td>Daily</td>
<td>No effect</td>
<td>Less than 50%</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>3 times/wk</td>
<td>No effect</td>
<td>No effect</td>
<td>-</td>
<td>sz free more than 6 mo</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>Daily</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>sz free more than 6 mo</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>Daily</td>
<td>No effect</td>
<td>More than 50%</td>
<td>-</td>
<td>-</td>
<td>No effect</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>Daily</td>
<td>No effect</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

CDKL5, cyclin-dependent kinase-like 5; Pt, patients; Hyps, hypsarrhythmia; EEG, electroencephalography; sz, seizure; freq, frequency; VPA, valproic acid; CLB, clobazam; VGB, vigabatrin; KD, ketogenic diet.
In the current study, we investigated 10 patients with the CDKL5 mutation, who were being treated with VPA (n = 8), CLB (n = 8), and/or VGB (n = 7). Five patients were being treated with a combination of all three drugs. Except for one patient who showed a more than 50% reduction in the frequency of seizures on CLB, most drugs yielded a less than 50% reduction in the frequency of seizures. There was no effect in six of the eight patients on VPA, and five of the seven patients on VGB. With CLB, however, only three of the eight patients reported no effect, four patients reported a less than 50% reduction, and one patient reported a less than 50% reduction. Based on these findings, CLB seems to be the most effective among the three drugs in reducing seizures.

We also studied the effect of a KD on seizure reduction. Eight patients were on a KD, and seven of them did not show any reduction in seizures. This seems to be different from previous studies that ketone-producing diets are most helpful in reducing the frequency of seizures [15]. However, this study has been studied with a small number of patients, so further studies are needed.

Seven patients were treated with steroids for seizure control. One of them maintained a seizure-free condition for more than 6 months, and three patients reported a more than 50% reduction in seizures. EEG results showed that four patients had hypsarrhythmia, three of whom also demonstrated a more than 50% reduction in seizures under steroid therapy. This suggests that steroid, a treatment option for infantile spasm, can also be a good treatment option for patients with CDKL5 mutations when they present with hypsarrhythmic EEG.

Contrary to previous studies, the AED and KD were not effective in CDKL5 mutation patients. However, in the case of hypsarrhythmic pattern on EEG, the steroid treatment showed a more than 50% seizure reduction effect (three-fourths). Currently, steroid therapy for infantile spasm is widely used and proven effective [12,13]. This study suggests that steroid treatment can also be helpful in cases of infantile spasm with a CDKL5 mutation who have a hypsarrhythmic EEG.

Due to the small number of patients included in this study and the limitations of the retrospective study, it is difficult to obtain reliable results, and some results show different results from previous studies. So, further studies will be needed in the future. In addition, this study evaluated the correlation with only interictal EEG pattern. This is also a limitation of this study and further research is needed.

Conflicts of interest

No potential conflicts of interest relevant to this article was reported.

Acknowledgements

This study was supported by a faculty research grant of Yonsei University College of Medicine (6-2015-0140).

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (grant number: HI18C0586).

ORCID

Hoon-Chul Kang, https://orcid.org/0000-0002-3659-8847

References

Purpose: Cytokines demonstrate active roles in the occurrence of febrile seizures (FS). However, whether a genetic predisposition to inflammation is implicated in FS, febrile seizure plus (FS+) or genetic epilepsy with febrile seizure plus (GEFS+) is still unclear. Therefore we perform this study to find the association of promotor variants in pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) genes and anti-inflammatory cytokine interleukin 10 (IL-10) genes either with FS, FS+, and GEFS+ in Korean children.

Methods: Fifty-seven children with FS, 32 FS+, and 12 GEFS+ patients were compared with 108 controls. The allelic and genotypic distributions were compared for TNF-α -238 (rs361525), -308 (rs1800629), -857 (rs1799724), -863 (rs1800630), and IL-10 -592 (rs1800872), -819 (rs1800871), -1082 (rs1800895), and -1352 (rs1800893).

Results: Allelic and genotypic frequencies of TNF-α and IL-10 promotor variants showed an association with FS, FS+, and GEFS+ in a recessive mode of inheritance pattern (P<0.05). AA genotypes at TNF-α -863 were present only in controls. However, AA genotypes at TNF-α -863 were present only in controls. TNF-α -863 (rs1800630) promoter variants showed an association with FS, FS+, and GEFS+ in a recessive mode of inheritance pattern (P<0.05).

Conclusion: Our results suggest that AA genotypes at TNF-α -863 may be associated with FS, FS+, and GEFS+, implicating protective roles against to development of FS, FS+, and GEFS+.

Keywords: Tumor necrosis factor-alpha; Interleukin-10; Epilepsy; Seizures, febrile; Variants
Introduction

Febrile seizure (FS) is the most common type of seizure during childhood period, and defined as seizures provoked by fever without central nervous system (CNS) infection [1]. Febrile states are induced by pyrogenic response to various infections, and the magnitude of pyrogenic response influences the body temperature of each child. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) are major pro-inflammatory cytokines controlling pyrogenic actions [2]. Overproduction of pro-inflammatory cytokines can boost pyrogenic action and in some children, therefore body temperatures may overwhelm the seizure threshold, provoking to develop FS.

The association between cytokine genetic variants and susceptibility to FS and epilepsy are still controversial. IL-1β-511 promoter variants were reported to have an association with FS [3,4]. TNF-α-308 genotype showed no significant association with FS in meta-analysis study [5-8]. In other studies, GG genotypes of TNF-α-238 were more prevalent than GA genotype among FS compared to controls in Iranian children [9]. Japanese FS study showed significant lower frequencies of the IL-10-592C/-819C/-1082A haplotype than controls [10]. In contrast, IL-10-592, -819, and -1082 showed no significant allelic association in Iranian FS study [11].

Genetic epilepsy with febrile seizure plus (GEFS+) is a familial disorder with association of FS and epilepsy and shows autosomal dominance inheritance with variable penetrance [12]. And febrile seizure plus (FS+) is a same phenotypic disorder to GEFS+ without family history. To date, sodium voltage-gated channel alpha subunit 1 (SCN1A), sodium voltage-gated channel beta subunit 1 (SCN1B), and gamma-aminobutyric acid type A receptor gamma2 subunit (GABRG2) are known to be disease-causing genes of GEFS+ [13]. Inheritance in GEFS+ is typically autosomal dominant with incomplete penetrance, although other complex inheritance patterns may also occur. However, whether genetic susceptibility to inflammation may be one of the genetic causes for FS or GEFS+ is still unclear.

To determine whether promotor variants of TNF-α and IL-10 influence the susceptibility to FS, FS+, and GEFS+, we analysed genetic variants in the promotor region of TNF-α and IL-10 among children with FS and GEFS+ patients and compared to controls.

Materials and Methods

1. Patient information
Children with FS, FS+, and GEFS+ patients were enrolled in this study from June 2008 to May 2013, visiting the emergency room of Seoul Metropolitan Government Seoul National University Boramae Medical Center with acute seizure attacks. Inclusion criteria for FS were children with seizures associated with fever above 38°C between 6-month-old to 5-year-old, without CNS infection, neurologic deficits and previous afebrile seizures [14]. Diagnosis of genetic epilepsy with febrile seizure plus (GEFSP) followed the criteria established in the 2017 International Classification of Epileptic Syndromes [15]. GEFS+ is usually diagnosed in families whose members have FSs that may continue past the usual age where these are expected to resolve and/or be accompanied by afebrile seizures that may be generalized seizures or focal seizures. FS+ are distinguished from the GEFS+ on the basis of family history. Controls were children matched for age without history of FS nor epilepsy. This study was approved by the Institutional Review Board at the Seoul Metropolitan Government Seoul National University Boramae Medical Center (20080918/06-2008-74/76). Informed consent was obtained from the parent of each child.

2. Variants selection
A total of four variants located in the promotor region of TNF-α, -238 (rs361525), -308 (rs1800629), -857 (rs1799724), -863 (rs1800630), and also four variants located in the promotor region of IL-10, -592 (rs1800872), -819 (rs1800871), -1082 (rs1800896), -1352 (rs1800893), were selected from the dbSNP database (www.ncbi.nlm.nih.gov/SNP) and the HapMap human SNP database (www.hapmap.org). For selecting variants, variants with a minor allele frequency above 0.05 were included. To estimate pairwise linkage disequilibrium of variant marker, we used Haplovıew v4.0 (http://www.broadinstitute.org/haplovıew/haplovıew). All variants did not show the results of the chi-square test to reject the Hardy-Weinberg equilibrium. The default confidence interval algorithm of the Haplovıew program revealed 1 haplotype block (Fig. 1A) of TNF-α-857, -863 and 1 haplotype block (Fig. 1B) of IL-10-592, -819, -1082, -1352, from patient group data.

3. Variant sequencing and genotyping
Probes and primers were designed with genomic sequence information. After amplifying the variant spanning fragments by polymerase chain reaction, genotyping was performed with SNaPshot (Sequenom, San Diego, CA, USA). The person analysing the genotype result was blinded to the clinical data.

4. Statistical analysis
The trend test, chi-square test, Fisher exact test and the logistic regression test were the statistical approaches used analysing the
genotype distributions of patient group including FS, FS+, and GEFS+ and then comparing with controls, depending on mode of inheritance [16], such as additive, dominant and recessive, based on the minor allele of each variants. IBM SPSS statistics version 20 (IBM Co., Armonk, NY, USA) and R version 3.2.5 (http://www.r-project.org) were used to analyse the tests. The statistical significance of differences was set as $P < 0.05$ for all tests.

Results

1. **Patient characteristics**

Fifty-seven children with FS, 32 FS+, and 12 GEFS+ patients and 108 controls were enrolled. Semiology of FS were 46 (81%) simple types and 11 (19%) complex types. Three FS children had a history of febrile status epilepticus. All patients with FS+ and GEFS+ developed epilepsy after previous FS attacks. The children with FS, FS+, and GEFS+ patients did not show significant differences by sex, age, and laboratory findings with controls.

2. **TNF-α allele and genotype variants**

AA genotypes at TNF-α-863 were present only in controls. AA genotype at TNF-α-863 showed significant negative association with FS, FS+, and GEFS+ ($P = 0.029$) (Table 1). TNF-α-238, TNF-α-308, and TNF-α-857 showed no significant allelic and genotypic differences (Table 2).

3. **IL-10 allele and genotype variants**

IL-10-592, -819, -1082, and -1352 failed to show significant allelic or genotypic association with FS, FS+, and GEFS+ compared to controls (Table 3 and 4).

4. **Haplotype analysis: TNF-α-857 and TNF-α-863**

Haplotype frequencies of block 1 consisted with TNF-α-863 and TNF-α-857 showed no significant association with patients group of FS, FS+, and GEFS+ compared to controls.

5. **Haplotype analysis: IL-10-592, -819, -1082, and -1352**

Haplotype frequencies of block 1 consisted with IL-10-592, -819, -1082, and -1352 showed no significant association with patients group of FS, FS+, and GEFS+ compared to controls (Table 5).

Discussion

This study demonstrates that allelic and genotypic frequencies of TNF-α and IL-10 promotor variants showed no significant differences between FS, FS+, and GEFS+ versus controls in Korean children. However, AA genotypes at TNF-α-863 were present only in controls, therefore AA genotype at TNF-α-863 showed...
Table 1. Comparison of genotypic frequencies of 4 TNF-α SNPs between the patients with FS, FS+, and GEFS+ versus controls

<table>
<thead>
<tr>
<th>Gene variants</th>
<th>Genotype</th>
<th>No. (%)</th>
<th>Genetic mode</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FS, FS+, GEFS+ (n=100)</td>
<td>Control (n=106)</td>
<td></td>
</tr>
<tr>
<td>TNF-α-238 rs361525</td>
<td>G/G</td>
<td>84 (84.0)</td>
<td>94 (88.7)</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>G/A</td>
<td>16 (16.0)</td>
<td>12 (11.3)</td>
<td>Dominant</td>
</tr>
<tr>
<td></td>
<td>A/A</td>
<td>0 (0.0)</td>
<td>1 (0.9)</td>
<td>Recessive</td>
</tr>
<tr>
<td>TNF-α-308 rs1800629</td>
<td>G/G</td>
<td>85 (85.9)</td>
<td>93 (87.7)</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>G/A</td>
<td>14 (14.1)</td>
<td>12 (11.3)</td>
<td>Dominant</td>
</tr>
<tr>
<td></td>
<td>A/A</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>Recessive</td>
</tr>
<tr>
<td>TNF-α-857 rs1799724</td>
<td>C/C</td>
<td>71 (71.7)</td>
<td>73 (68.9)</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>C/T</td>
<td>24 (24.2)</td>
<td>30 (28.3)</td>
<td>Dominant</td>
</tr>
<tr>
<td></td>
<td>T/T</td>
<td>4 (4.0)</td>
<td>3 (2.8)</td>
<td>Recessive</td>
</tr>
<tr>
<td>TNF-α-863 rs1800630</td>
<td>C/C</td>
<td>69 (69.0)</td>
<td>69 (65.1)</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>C/A</td>
<td>31 (31.0)</td>
<td>31 (29.2)</td>
<td>Dominant</td>
</tr>
<tr>
<td></td>
<td>A/A</td>
<td>0 (0.0)</td>
<td>6 (5.7)</td>
<td>Recessive</td>
</tr>
</tbody>
</table>

*P<0.05.

Table 2. Comparison of allelic frequencies of 4 TNF-α SNPs between the patients with FS, FS+, and GEFS+ versus controls

<table>
<thead>
<tr>
<th>Gene variants</th>
<th>Genotype</th>
<th>No. (%)</th>
<th>Allelic association</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FS, FS+, GEFS+ (n=100)</td>
<td>Control (n=106)</td>
<td></td>
</tr>
<tr>
<td>TNF-α-238 rs361525</td>
<td>G</td>
<td>184 (92)</td>
<td>200 (94)</td>
<td>0.346</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>16 (8)</td>
<td>12 (6)</td>
<td></td>
</tr>
<tr>
<td>TNF-α-308 rs1800629</td>
<td>G</td>
<td>184 (93)</td>
<td>198 (93)</td>
<td>0.851</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>14 (7)</td>
<td>14 (7)</td>
<td></td>
</tr>
<tr>
<td>TNF-α-857 rs1799724</td>
<td>C</td>
<td>166 (84)</td>
<td>176 (83)</td>
<td>0.824</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>32 (16)</td>
<td>36 (17)</td>
<td></td>
</tr>
<tr>
<td>TNF-α-863 rs1800630</td>
<td>C</td>
<td>169 (85)</td>
<td>169 (80)</td>
<td>0.206</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>31 (15)</td>
<td>43 (20)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Comparison of genotypic frequencies of 4 IL-10 SNPs between the patients with FS, FS+, and GEFS+ versus controls

<table>
<thead>
<tr>
<th>Gene variants</th>
<th>Genotype</th>
<th>No. (%)</th>
<th>Genetic mode</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FS, FS+, GEFS+ (n=100)</td>
<td>Control (n=106)</td>
<td></td>
</tr>
<tr>
<td>IL-10-592 rs1800872</td>
<td>A/A</td>
<td>54 (54.0)</td>
<td>50 (47.2)</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>A/C</td>
<td>40 (40.0)</td>
<td>49 (46.2)</td>
<td>Dominant</td>
</tr>
<tr>
<td></td>
<td>C/C</td>
<td>6 (6.0)</td>
<td>7 (6.6)</td>
<td>Recessive</td>
</tr>
<tr>
<td>IL-10-819 rs1800871</td>
<td>T/T</td>
<td>54 (54.0)</td>
<td>50 (47.2)</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>T/C</td>
<td>40 (40.0)</td>
<td>49 (46.2)</td>
<td>Dominant</td>
</tr>
<tr>
<td></td>
<td>C/C</td>
<td>6 (6.0)</td>
<td>7 (6.6)</td>
<td>Recessive</td>
</tr>
<tr>
<td>IL-10-1082 rs1800896</td>
<td>A/A</td>
<td>86 (86.0)</td>
<td>96 (90.6)</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>A/G</td>
<td>13 (13.0)</td>
<td>8 (7.7)</td>
<td>Dominant</td>
</tr>
<tr>
<td></td>
<td>G/G</td>
<td>1 (1.0)</td>
<td>1 (1.0)</td>
<td>Recessive</td>
</tr>
<tr>
<td>IL-10-1352 rs1800893</td>
<td>G/G</td>
<td>86 (86.0)</td>
<td>96 (90.6)</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>G/A</td>
<td>13 (13.0)</td>
<td>9 (8.5)</td>
<td>Dominant</td>
</tr>
<tr>
<td></td>
<td>A/A</td>
<td>1 (1.0)</td>
<td>1 (0.9)</td>
<td>Recessive</td>
</tr>
</tbody>
</table>

IL, interleukin; SNP, single nucleotide polymorphism; FS, febrile seizure; FS+, febrile seizure plus; GEFS+, genetic epilepsy with febrile seizure plus.
significant negative association with FS, FS+, and GEFS+ compared to controls. Thus, this results may suggest that AA genotypes at TNF-α-863 show protective effects against FS, FS+, and GEFS+. However, our study population is small, so further study is needed with larger number of patients.

Pro-inflammatory cytokines play major actions in seizure generation and exacerbation [17]. IL-1β and TNF-α showed elevated levels in brains of experimental animals after electrical stimulation of the amygdala [18]. TNF-α is mostly released by microglia in the brain [19] and induces astrocytes to release glutamate [20]. An increase in extracellular glutamate may stimulate glutamatergic neurons, leading neuronal hyper-excitability. TNF-α upregulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropanic acid (AMPA) receptors, increasing glutamatergic transmission [21]. TNF-α also upregulates endocytosis of gamma-Aminobutyric acid, or γ-aminobutyric acid (GABA) receptors, and eventually suppresses effects of the inhibition [22]. Altogether TNF-α leads to increase seizure susceptibility [22,23].

TNF-α is a potent pro-inflammatory cytokine showing implications with a large number of human diseases including many autoimmune diseases [7]. TNF-α shows alternate roles depending on variants of TNF-α gene regulating its effect and production [24]. Therefore, genetic variants that upregulate cytokine production may increase susceptibility to inflammation; subsequently, an exaggerated pro-inflammatory cytokine responses during infection may predispose in certain children to develop FS and subsequent epilepsy, especially FS+, and GEFS+. The postictal serum levels of IL-1β, IL-6, TNF-α, and high mobility group box 1 (HMGB1) showed significant elevation among children with FS attacks and children with epilepsy in afebrile seizure attacks, shown in our previous study [25].

<table>
<thead>
<tr>
<th>Gene variants</th>
<th>Allele</th>
<th>No. (%)</th>
<th>Allelic association P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-10-592 rs1800872</td>
<td>A</td>
<td>148 (74)</td>
<td>149 (70)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>52 (26)</td>
<td>63 (30)</td>
</tr>
<tr>
<td>IL-10-819 rs1800871</td>
<td>T</td>
<td>148 (74)</td>
<td>149 (70)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>52 (26)</td>
<td>63 (30)</td>
</tr>
<tr>
<td>IL-10-1082 rs1800896</td>
<td>A</td>
<td>185 (93)</td>
<td>198 (95)</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>15 (7)</td>
<td>10 (5)</td>
</tr>
<tr>
<td>IL-10-1352 rs1800893</td>
<td>G</td>
<td>185 (93)</td>
<td>201 (95)</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>15 (7)</td>
<td>11 (5)</td>
</tr>
</tbody>
</table>

Table 4. Comparison of allelic frequencies of 4 IL-10 SNPs between the patients with FS, FS+, and GEFS+ versus controls

<table>
<thead>
<tr>
<th>Gene variants</th>
<th>Allele</th>
<th>No. (%)</th>
<th>Allelic association P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-10-592 rs1800872</td>
<td>A</td>
<td>148 (74)</td>
<td>149 (70)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>52 (26)</td>
<td>63 (30)</td>
</tr>
<tr>
<td>IL-10-819 rs1800871</td>
<td>T</td>
<td>148 (74)</td>
<td>149 (70)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>52 (26)</td>
<td>63 (30)</td>
</tr>
<tr>
<td>IL-10-1082 rs1800896</td>
<td>A</td>
<td>185 (93)</td>
<td>198 (95)</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>15 (7)</td>
<td>10 (5)</td>
</tr>
<tr>
<td>IL-10-1352 rs1800893</td>
<td>G</td>
<td>185 (93)</td>
<td>201 (95)</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>15 (7)</td>
<td>11 (5)</td>
</tr>
</tbody>
</table>

Table 5. Haplotype frequency analysis between FS, FS+, and GEFS+ versus controls

FS, febrile seizure; FS+, febrile seizure plus; GEFS+, genetic epilepsy with febrile seizure plus; TNF-α, tumor necrosis factor-α; IL, interleukin.
than AA genotype.

Korean Reference Genome DB KRGDB (http://coda.nih.go.kr/coda/KRGDB/index.jsp) are the free database of 1,100 Korean genomes. A allele frequency of TNF-a-863 is 15% and genotype frequencies are no available. In our study, A allele frequency is 15% in patients group of FS, FS+, and GEFS+ and 20% in controls; therefore, we can assume that our study population is not deviant to the general Korean population. The GG genotypes of TNF-a-238 were more prevalent than GA genotype among FS compared to controls in an Iranian study [9]. However, in our Korean population, there were no significant genotypic differences at TNF-a-238 in patient group of FS, FS+, and GEFS+ compared to controls.

TNF-a-308 is reported to have an association with higher susceptibility to asthma, atopic dermatitis, increased fatality in meningococcemia and ankylosing spondylitis [29-32]. However, in FS meta-analysis study, TNF-a-308 genotype showed no significant association [5-8]. Our study also showed no significant association at TNF-a-308 with FS, FS+, and GEFS+.

IL-10 is a major cytokine having anti-inflammatory action in immune system. IL-10 injected animals showed significantly higher threshold for provoking FS attacks than that in the controls, suggesting a protective effect to FS development [10]. IL-10 serum levels are controversial in several FS studies with some reporting increased [33] or others not increased levels [3,34].

IL-10 transmits negative feedback signals to decrease the immune system activation upon various inflammatory stimuli [35]. The IL-10-592, -819, and -1082 are placed in the IL-10 promoter regions having putative regulatory actions [36]. In a study of Japanese FS patients, the frequencies of the IL-10-592C/-819C/-1082A haplotype were significantly lower than controls [10]. In our study, the haplotype frequencies of IL-10-592C/-819C/-1082A/-1352G were also decreased in patient group with FS, FS+, and GEFS+ compared to controls, although statistically insignificant (18.5% vs. 24.5%, P = 0.497). In contrast, Iranian FS study reported that IL-10-592, -819, and -1082 showed no significant allelic association [11].

The limitation of our study is relatively small number of patients enrolled. Therefore, further studies with larger number of patients with different ethnicities are needed to reveal the exact association of TNF-a gene variants with FS, FS+, and GEFS+ in children.

In summary, allelic and genotypic frequencies of TNF-a and IL-10 promoter variants showed no significant differences between FS, FS+, and GEFS+ versus controls. However, AA genotypes at TNF-a-863 were present only in controls; therefore, TNF-a-863 (rs1800630) promoter variants may be negatively associated with FS, FS+, and GEFS+. Our results support that the promoter genetic variant linked to lesser production of pro-inflammatory cytokine TNF-a may be implicated in the protection to fever-provoked seizures in Korean children.

Conflicts of interest

No potential conflicts of interest relevant to this article was reported.

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2016R1A2B4009438), the Seoul National University Hospital Research Fund (No. 03-2015-0120 and No. 04-2012-0140), and the Seoul National University Boramee Hospital Research Fund (No. 03-2011-15, No.03-2013-8 and No.01-2014-11) to Jieun Choi, and by grants from the NRF funded by the Korean government (MEST) (No. 2014R1A4A1008625 and 2017R1A2B3006704) to Jeon-Soo Shin.

ORCID

Jieun Choi, https://orcid.org/0000-0001-6845-8745
Jeon-Soo Shin, https://orcid.org/0000-0002-8294-3234

References

6. Chou IC, Lin WD, Wang CH, Tsai CH, Li TC, Tsai FJ. Interleukin (IL)-1beta, IL-1 receptor antagonist, IL-6, IL-8, IL-10, and

32. Nadel S, Newport MJ, Booy R, Levin M. Variation in the tumor ne-
crosis factor-alpha gene promoter region may be associated with
34. Virta M, Hurme M, Helminen M. Increased plasma levels of
pro- and anti-inflammatory cytokines in patients with febrile
35. Youn Y, Sung IK, Lee IG. The role of cytokines in seizures: in-
terleukin (IL)-1beta, IL-1Ra, IL-8, and IL-10. Korean J Pediatr
36. Eskdale J, Wordsworth P, Bowman S, Field M, Gallagher G. Asso-
ociation between polymorphisms at the human IL-10 locus and
Purpose: Acquired epileptic aphasia (AEA) accompanied by electroencephalogram (EEG) abnormality is a rare disease; therefore, there are few studies investigating the prognostic factors and treatment efficacy. We aimed to determine the therapeutic effects and prognostic factors for clinical seizure and neuropsychological function in acquired aphasia patients.

Methods: We retrospectively studied cases of AEA diagnosed at Severance Children’s Hospital from January 2013 to October 2017. We evaluated the efficacy of antiepileptic drugs, steroids, and ketogenic diets (KD) in treating acquired aphasia. The EEG patterns and prognostic factors were predicted by the background EEG and frequency of spike and wave during sleep (SWS).

Results: The study analyzed 20 patients, 11 male and 9 female, with AEA. Aphasia most likely occurred at 4 years of age, and clinical seizure was most likely to occur between 2 and 4 years of age and focal seizures were the most common seizure type. KD was shown to be the best treatment for clinical seizure in AEA patients. Patients with normal EEG background showed better responses to clinical seizure treatment and improvements in neuropsychological function.

Conclusion: KD and steroids generate the best therapeutic effects for clinical seizure in AEA patients. Improvements in neuropsychological function in AEA patients may be related to the EEG background and the SWS patterns. Additionally, the results suggest that the response of clinical seizure to antiepileptic drugs may also be related to the EEG background. However, the current study had some limitations and further research is needed.

Keywords: Aphasia; Landau-Kleffner syndrome; Epilepsy

Introduction

Acquired epileptic aphasia is a sudden or progressive language impairment with an abnormality in the electroencephalogram (EEG) [1-3]. Some researchers have reported that epileptiform EEG discharges can affect not only language impairment but also neurocognitive function [3,4]. Language impairment with an abnormality in the EEG is observed in some epilepsy syndrome, such as electrical status epilepticus during sleep (ESES), continuous spike and wave during slow sleep (CSWS), and Landau-Kleffner syndrome (LKS) [3]. In much of the previous literature, CSWS and ESES were used interchangeably and LKS considered a subtype of CSWS [2-5].

Acquired epileptic aphasia is commonly referred to as LKS, which was first introduced in 1957 [1]. It usually shows auditory agnosia with focal or multifocal spikes or spike and wave dis-
This study was approved by the Institutional Review Board (IRB) of Yonsei University (IRB no., 4-2016-0080). Informed consent was waived due to the retrospective nature of the study.

Results

In our patient cohort, 11 patients (55%) were males and nine patients (45%) were females. Aphasia occurred at 2 to 9 years of age, with six patients (30%) occurring at the age of 4, three patients (15%) at the age of 3, and three patients (15%) at the age of 7. Most commonly, clinical seizure in acquired aphasia occurred at 2, 3, and 4 years of age. Their clinical seizures were focal motor seizures (12 patients, 60%), generalized motor seizures (six patients, 30%), and dyscognitive type seizures (two patients, 10%).

When the EEG background wave was analyzed, seven patients (35%) showed a normal background rhythm, whereas 11 patients (55%) showed a GSW background pattern. The most common EEG patterns during sleep were focal CSWS patterns ≥ 85%, which occurred in 10 patients (50%), and generalized CSWS patterns ≥ 85%, which occurred in six patients (20%).

The most effective treatment for seizure in acquired aphasia was KD, followed by steroid administration, with 100% and 90% treatment efficacy, respectively. We also analyzed the relationship between EEG background pattern and treatment efficacy. VPA was used in a total of 18 patients and showed a positive effect in 10 of these 18 patients (56%). In patients with GSW EEG background activity, five of 10 patients (50%) were effectively treated with VPA, and in patients with normal EEG background activity, five of six patients (83.3%) were effectively treated with VPA. LEV was used in 11 patients, of which seven patients were effectively treated by the drug. In patients with normal background EEG, LEV was effective at treating all three patients it was prescribed to. In patients with GSW EEG background, LEV was effective in treating four of six patients. Ten patients who did not respond to AEDs were treated with steroids, nine patients (90%) showed a response to treatment. Ten patients who had a recurrence after steroid therapy and did not respond to AEDs were treated with KD, 10 patients (100%) showed a response to treatment. Steroids were used in patients with normal EEG background (n = 4), GSW (n = 5), and FSW (n = 1). In the case of GSW background rhythm, all five patients were effectively treated for the clinical seizure. Similarly, the one patient with FSW was also effectively handled for the clinical seizure by steroid administration. KD was used in patients with normal (n = 3), disorganized (n = 1), and GSW (n = 6) EEG backgrounds, and was effective in treating all patients (Table 1). In the comparison of treatment effect on seizure and the frequency of SWS, VPA was

Materials and Methods

We retrospectively analyzed 20 patients (11 males, nine females) with acquired aphasia diagnosed at Severance Children’s Hospital from January 2013 to October 2017. Patients with acquired aphasia were included in the study, with or without seizures. They were assessed via EEG for more than 4 hours, and this test was examined by the International 10 to 20 system. EEG background waves were divided into four patterns: normal, disorganized, generalized slowing (GSW), and focal slowing (FSW). The frequency of spike and wave during sleep (SWS) on the EEG was grouped according to frequency as ≥ 85% and 50% to 84%, and divided into generalized and focal types according to the pattern. The response to different treatments was analyzed using the antiepileptic drugs (AEDs), valproate (VPA), and levetiracetam (LEV), in addition to other treatments, namely steroid and ketogenic diets (KDs). Treatment effects were assessed by clinical seizure at each outpatient clinic. We consider a positive effect of treatment that the frequency of seizures was reduced by 50% or more, and continued these statuses for more than 6 months. If it did not meet the above criteria, the treatment option was added or changed. The evaluation of neuropsychological function was evaluated through evaluation tools such as Korean Wechsler Intelligence Scale for Children. The test was performed at the time of diagnosis and 3 to 6 months later, and the results were evaluated by comparing the two tests.

Patients were enrolled in the study if they showed language impairment irrespective of the type of clinical seizure, including cases with no specific findings on their brain magnetic resonance imaging.

We excluded epileptic encephalopathy such as Lennox-Gastaut syndrome, which may accompany other cognitive impairments.

charges on the EEG which are continuous or nearly continuous during sleep [5].

CSWS shows general developmental difficulties including linguistic problems, and more than 85% of continuous spikes and waves in the EEG are seen during sleep. Usually, these are seen as bilateral and symmetric, but it could be shown asymmetric or focal patterns [6-12]. CSWS shows premorbid central nervous system dysfunction whereas LKS rarely indicates such [5].

Acquired aphasia with clinical seizures is a rare disease, and the prognostic factor of treatment and the cognitive outcome were less studied. In this study, we investigated the prognosis of neuropsychological function and therapeutic effect of clinical seizures through EEG in patients who have a language impairment with clinical seizure without distinguishing between LKS and CSWS.

Materials and Methods

We retrospectively analyzed 20 patients (11 males, nine females) with acquired aphasia diagnosed at Severance Children’s Hospital from January 2013 to October 2017. Patients with acquired aphasia were included in the study, with or without seizures. They were assessed via EEG for more than 4 hours, and this test was examined by the International 10 to 20 system. EEG background waves were divided into four patterns: normal, disorganized, generalized slowing (GSW), and focal slowing (FSW). The frequency of spike and wave during sleep (SWS) on the EEG was grouped according to frequency as ≥ 85% and 50% to 84%, and divided into generalized and focal types according to the pattern. The response to different treatments was analyzed using the antiepileptic drugs (AEDs), valproate (VPA), and levetiracetam (LEV), in addition to other treatments, namely steroid and ketogenic diets (KDs). Treatment effects were assessed by clinical seizure at each outpatient clinic. We consider a positive effect of treatment that the frequency of seizures was reduced by 50% or more, and continued these statuses for more than 6 months. If it did not meet the above criteria, the treatment option was added or changed. The evaluation of neuropsychological function was evaluated through evaluation tools such as Korean Wechsler Intelligence Scale for Children. The test was performed at the time of diagnosis and 3 to 6 months later, and the results were evaluated by comparing the two tests.

Patients were enrolled in the study if they showed language impairment irrespective of the type of clinical seizure, including cases with no specific findings on their brain magnetic resonance imaging.

We excluded epileptic encephalopathy such as Lennox-Gastaut syndrome, which may accompany other cognitive impairments.
an effective treatment in five of 10 patients (50%) with ≥ 85% focal SWS, whereas LEV was effective in one of three patients (33.3%) with ≥ 85% focal SWS. Steroids were an effective treatment for five of six patients (83.3%) and KD was effective in five of five patients (100%) with ≥ 85% focal SWS. In the case of ≥ 85% of generalized SWS, VPA was effective in four of six patients (66.7%), LEV was effective in three of five patients (60%), and both steroid and KD were effective in four of four patients (100%). The above contents are summarized in Table 1.

We compared neuropsychological function with EEG background activity and the frequency of SWS in acquired aphasia. Ten patients had normal neuropsychological function and 10 patients had delayed function. In patients with normal neuropsychological function, six patients (60%) showed normal EEG background and four patients (40%) showed GSW EEG background. In patients with normal EEG background, six patients (85.7%) showed normal neuropsychological function and one patient (14.3%) showed delayed function. EEG background activity showed a GSW pattern in seven patients (70%) with delayed neuropsychological function. We also analyzed the correlation between pattern and frequency of SWS and neuropsychological function. There were 14 patients with focal abnormalities who included SWS ≥ 85% pattern and six patients with generalized SWS ≥ 85% on EEG. Seven patients (50%) with focal abnormality on EEG showed mild to moderate neuropsychological abnormality and seven patients (50%) with focal abnormality were normal neuropsychological function and three patients (50%) with generalized SWS ≥ 85% were normal cognitive function. However, one patient (17%) generalized SWS ≥ 85% on EEG showed severe neuropsychological abnormality (Fig. 1). This is the only patient with severe cognitive impairment in this study. In 10 patients with abnormal neuropsychological function, the functional improvement was seen in nine cases with non-generalized background rhythm or focal epileptiform discharges in EEG but neither GSW of EEG background nor generalized CSWS patients showed functional improvement (Table 2).

Discussion

Our results show similar onset age of clinical symptoms to that reported by the existing literature [13]. In this study, the most common age of aphasia onset was 4 years, and the period of clinical seizure was most commonly 2 to 4 years of age. In our study, most patients with aphasia showed ≥ 85% CSWS, more commonly exhibiting focal CSWS patterns than the generalized

![Fig. 1](https://doi.org/10.26815/acn.2019.00059)

Table 1. The effect of treatment for clinical seizure on EEG patterns

<table>
<thead>
<tr>
<th>Variable</th>
<th>Normal (n = 7)</th>
<th>DO (n = 1)</th>
<th>GSW (n = 11)</th>
<th>FSW (n = 1)</th>
<th>Total</th>
<th>Focal CSWS ≥ 85% (n = 10)</th>
<th>Focal CSWS 50%–84% (n = 2)</th>
<th>Generalized CSWS ≥ 85% (n = 6)</th>
<th>Focal abnormality (n = 2)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPA</td>
<td>5/6 (83.3)</td>
<td>0/1 (0)</td>
<td>5/10 (50)</td>
<td>0/1 (0)</td>
<td>10/18 (56)</td>
<td>5/10 (50)</td>
<td>0/1 (0)</td>
<td>1/1 (100)</td>
<td>4/6 (66.7)</td>
<td>0/1 (0)</td>
</tr>
<tr>
<td>LEV</td>
<td>5/6 (83.3)</td>
<td>0/1 (0)</td>
<td>4/6 (66.7)</td>
<td>0/1 (0)</td>
<td>7/11 (64)</td>
<td>1/3 (33.3)</td>
<td>2/2 (100)</td>
<td>3/5 (60)</td>
<td>1/1 (100)</td>
<td>7/11 (63.6)</td>
</tr>
<tr>
<td>Steroid</td>
<td>3/4 (75)</td>
<td>-</td>
<td>5/5 (100)</td>
<td>1/1 (100)</td>
<td>9/10 (90)</td>
<td>5/6 (83.3)</td>
<td>-</td>
<td>4/4 (100)</td>
<td>-</td>
<td>9/10 (90)</td>
</tr>
<tr>
<td>KD</td>
<td>3/3 (100)</td>
<td>1/1 (100)</td>
<td>6/6 (100)</td>
<td>-</td>
<td>10/10 (100)</td>
<td>5/5 (100)</td>
<td>-</td>
<td>4/4 (100)</td>
<td>1/1 (100)</td>
<td>10/10 (100)</td>
</tr>
</tbody>
</table>

Values are presented as number (%).

EEG, electroencephalogram; CSWS, continuous spike and wave during sleep; DO, disorganized; GSW, generalized slowing; FSW, focal slowing; VPA, valproate; LEV, levetiracetam; KD, ketogenic diet.
CSWS pattern. The correlation between EEG background activity and treatment for clinical seizure was difficult to find. However, when patients with ≥ 85% focal CSWS and patients with ≥ 85% generalized CSWS were compared, it was found that overall the latter responded well to treatment. Among the treatments considered, steroid administration and KD was found to be most effective, consistent with previous studies [14-16]. The results also show, using two different AEDs, VPA and LEV, that patients with normal EEG background activity show greater treatment response, and those AEDs were more effective in patients with generalized CSWS patterns than focal patterns. The efficacy for clinical seizure patients with CSWS > 85% on EEG and the generalized pattern seems to be better. However, the therapeutic effect of LEV for clinical seizure showed a better effect in less than 84% CSWS and simple focal abnormality of EEG epileptiform pattern. So, we propose keeping in mind the epileptiform pattern of EEG when treating clinical seizures with acquired aphasia.

At diagnosis, 50% of patients showed normal neuropsychological function, while 45% showed mild to moderate delayed function. Among the patients with normal neurological function, 60% showed normal EEG background, whereas 70% of patients with delayed neurological function showed GSW EEG background. Therefore, the results suggest that EEG background activity is related to neuropsychological function in patients with CSWS. Among the patients with delayed function, one patient showed no improvement following treatment. In the relationship between prognosis of neuropsychological function and EEG, we found that the generalized pattern on EEG got a poor outcome than other patterns and the patients with focal CSWS patterns were usually mildly delayed, whereas those with generalized CSWS patterns were severely delayed. Through these results, we could consider that the generalized pattern in the EEG affects cognitive function and would suggest that the EEG background pattern may help predict the prognosis of neuropsychological function.

We could consider that the EEG pattern will be helpful in the treatment of clinical seizure and prediction for neuropsychological prognosis in acquired aphasia. However, this study has a limitation due to a small number of patients identified in a single center. Additional studies will be needed in the future to elucidate this relationship further.

Conflicts of interest

No potential conflicts of interest relevant to this article were reported.

Acknowledgements

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (grant number: HI18C0586).

ORCID

Hoon-Chul Kang, https://orcid.org/0000-0002-3659-8847

References

Reconsideration of Vigabatrin Effect in Infantile Spasms Treatment

Da Hye Yoon, MD, Ja Un Moon, MD, Joo Young Lee, MD, In Goo Lee, MD

Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea

Purpose: To investigate the effect of vigabatrin (VGB) as a therapeutic agent for patients with infantile spasms (IS), compare risk factors for treatment response, and review safety of VGB by assessing its side effects.

Methods: Among 35 patients admitted to the Department of Pediatric Neurology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea who received initial monotherapy with VGB under diagnosis of IS, 23 patients who met our inclusion criteria were enrolled and their medical records were retrospectively reviewed.

Results: Of these 23 patients, average age at diagnosis was 7.26 ± 4.8 months and average age at spasms was 6.20 ± 3.8 months. Average treatment lag was 1.09 ± 1.8 months. Thirteen patients (56.5%) achieved seizure free status. There was no ophthalmic complication among patients. Remission of hypsarrhythmia at 3 and 6 months after treatment was a good prognostic factor (P=0.026 and P=0.004, respectively).

Conclusion: VGB is effective enough to become a first-line drug for children with IS. Better prognosis can be expected in patients with clinical remission of hypsarrhythmia on electroencephalography after treatment initiation using VGB compared to those who do not have such remission. Regular eye examination and follow-up check-up are also needed in parallel with the use of VGB.

Keywords: Spasms, infantile; Vigabatrin

Introduction

Infantile spasms (IS) are intractable epilepsies classified as epileptic encephalopathy in the International League Against Epilepsy (ILAE) [1]. They typically present three clinical features: epileptic spasms, developmental delay, and the presence of hypsarrhythmia on electroencephalography (EEG) under 2 years old [2]. They do not respond well to conventional anticonvulsant. Thus, adrenocorticotropic hormone (ACTH), steroid, and vigabatrin (VGB) have been used as initial therapeutic agents [3].

VGB was first marketed for treating intractable complex partial seizure and IS in the United Kingdom (UK) in 1989. VGB is an irreversible, selective inhibitor of enzyme-activated gamma aminobutyric acid transaminase. It suppresses gamma aminobutyric acid transaminase catabolism and enhances the activation of interneurons by increasing availability of gamma aminobutyric acid in synaptic cleft [4]. In addition, VGB can partially inhibit mammalian target of rapamycin and glial proliferation in animal model of tuberous sclerosis complex [5]. However, some studies have shown increased risk of peripheral visual field defects.
(VFDs) by VGB in adults and children [6]. Thus, the use of
VGB has been limited for a while. The frequency of VFDs has
been reported to be 21% to 34% in Western studies [7-9]. Tau-
rine deficiency [10,11] and reversible magnetic resonance imaging (MRI) changes [12,13] might play considerable roles in the
development of VFDs. Nevertheless, it is inadequate to conclude
that all ethnicities in the world will develop VFDs after using
VGB as there have been no collected baseline data of patients
prior to VGB administration. In 2009, the United States Food
and Drug Administration approved the use of VGB as a mono-
therapy in 1 month old to 2 years old children with IS since
VFDs seemed to be related to prolonged administration of VGB
and accumulated quantity of VGB in the body [14]. In 2013,
VGB was also approved as a therapeutic agent for older patients
(> 10 years old) with intractable complex partial seizures.

The use of ACTH for patients with IS is impossible in South
Korea at present time. Therefore, there are very limited options
for patients with IS in our country. Recently, it has been reported
that the incidence of VFDs is not significantly increased when
VGB is used for a short period of time [15-17]. Therefore, we
need to reconsider the use of VGB as a therapeutic agent for pa-
tients with intractable epilepsy including IS. Thus, the objective
of this study was to investigate the effect of VGB in patients with
IS and identify factors closely related to the treatment by com-
paring two groups (treatment responder group and treatment
non-responder group). In addition, the safety of VGB was re-
viewed by assessing its side effects.

Materials and Methods

1. Study subjects
Among 35 patients admitted to the Department of Pediatric
Neurology, Seoul St. Mary’s Hospital, College of Medicine, The
Catholic University of Korea from April 2009 to June 2018 who
received initial monotherapy with VGB under the diagnosis of
IS, 23 patients (13 males, 10 females) aged 2 months old to 2
years old who had follow-up check-up for 6 months or more
were enrolled. Exclusion criteria were: (1) any symptom or EEG
interpretation inappropriate for diagnosis of IS, (2) initial thera-
py using agents other than VGB, and (3) patients who failed to
make follow-up check-up for 6 months or more.

All participants were referred to the Department of Ophthal-
mology for eye examination prior to treatment and at 3 and 6
months after initiation of treatment. There was a limitation for
visual field examination due to patient’s age. Thus, visual adverse
effects were identified through visual evoked potential (VEP),
funduscopic examination, and guardian’s questionnaire.

This was a retrospective study with data collected from medi-
cal records of participants. This study was approved by the Insti-
tutional Review Board (IRB) of Seoul St. Mary’s Hospital, Col-
lege of Medicine, The Catholic University of Korea (IRB num-
ber: KC17RESI0535). Written informed consent by the patients
was waived due to a retrospective nature of our study.

2. Methods
IS was diagnosed based on clinical features and EEG findings
of patients. The feature of epileptic spasm is a brief, bilateral sym-
metrical contraction of muscles involving neck, body, and extre-
mities. In addition, there must be a presence of hypsarrhyth-
mia or modified hypsarrhythmia on EEG. Based on onset age of
seizures, participants were divided into four groups: 6, 6 to 12, 12
to 18, and 18 to 24 months.

Potential risk factors such as age of onset, age at diagnosis, sex,
birth history, presence of developmental delay, brain MRI find-
ings, treatment lag (delayed period between clinical onset of
spasms and initiation of treatment), presence of hypsarrhythmia
on EEG, and clinical remission of hypsarrhythmia after the treat-
ment were used to examine their associations with VGB treat-
ment response. Participants were divided into two groups ac-
cording to outcome of treatment. Each potential risk factor was
statistically analyzed by comparing the two groups. All patients
underwent Bayley scales of Infant Development-II test to assess
developmental delay. Patients who showed 25% or more delay in
one developmental area were defined as having developmental
delays.

Initial dose of VGB was 40 to 50 mg/kg/day administered in
two divided doses. The dose of VGB was gradually increased ev-
ery 2 days to a target dose of 100 mg/kg/day. However, if the pa-
tient responded to a given lower dose of medication, the dose
was maintained without further increase. When a patient did not
respond to a dose of 100 mg/kg/day, the patient was treated with
polytherapy in combination with other treatments such as ste-
roid pulse therapy without increasing VGB dose.

The effect of VGB treatment on participants were evaluated at
6 months after the treatment based on decrease in frequency of
spasms as a clinical evaluation criterion. Participants were divid-
ed into three groups based on the decrease in frequency of
spasms: group 1, completely resolved; group 2, resolved more
than 50%; and group 3, resolved less than 50%. For statistical
analysis, patients in groups 2 and 3 were assigned to treatment
non-responder group. IBM SPSS version 24.0 (IBM Co., Ar-
monk, NY, USA) was used for all statistical analyses. To distin-
guish the difference between treatment responder group and
treatment non-responder group, independent t-test was used.
when normality assumption was available whereas Mann-Whitney U test was used when the normality assumption was unavailable. Chi-square test was used to determine the relationship with independent variables. Result was considered statistically significant when P value was less than 0.05.

Results

From April 2009 to June 2018, 35 patients who were admitted to the Department of Pediatric Neurology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, received initial monotherapy with VGB under the diagnosis of IS. Only 23 patients (males 13, females 10) met the study criteria. Data of each patient including sex, birth history, developmental delay, brain MRI findings are shown in Table 1.

Of these 23 patients, their average age at spasms was 6.20 ± 3.8 months. Among age groups, those who were less than 6 months old accounted for the most (60.9%, 14 patients). Average age at diagnosis of IS was 7.26 ± 4.8 months. Twenty patients (86.9%) were diagnosed with IS before 12 months of age and 13 patients were diagnosed before the age of 6 months old. Treatment lag time ranged from less than 1 to 9 months, with average treatment lag of 1.09 ± 1.8 months.

Birth complications were reported in eight patients (34.8%), Table 1.

Table 1. Demographic features of cohort, comparison of responders and non-responders

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cohort (n = 23)</th>
<th>Responders (n = 13)</th>
<th>Non-responders (n = 10)</th>
<th>P valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at onset of spasms (mo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 6</td>
<td>6.20 ± 3.8 (1–15)</td>
<td>4.89 ± 2.6 (1–8)</td>
<td>7.90 ± 4.5 (2.5–13)</td>
<td>0.056</td>
</tr>
<tr>
<td>6<n≤12</td>
<td>14 (60.9)</td>
<td>9 (69.2)</td>
<td>5 (50.0)</td>
<td></td>
</tr>
<tr>
<td>12<n≤18</td>
<td>3 (13.0)</td>
<td>0</td>
<td>3 (30.0)</td>
<td></td>
</tr>
<tr>
<td>18<n≤24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Age at diagnosis (mo)</td>
<td>7.26 ± 4.8 (2–22)</td>
<td>5.61 ± 2.5 (2–9)</td>
<td>9.40 ± 6.2 (3–22)</td>
<td>0.058</td>
</tr>
<tr>
<td>≤ 6</td>
<td>3 (56.5)</td>
<td>8 (61.5)</td>
<td>5 (50.0)</td>
<td></td>
</tr>
<tr>
<td>6<n≤12</td>
<td>7 (30.4)</td>
<td>5 (38.5)</td>
<td>2 (20.0)</td>
<td></td>
</tr>
<tr>
<td>12<n≤18</td>
<td>2 (8.7)</td>
<td>0</td>
<td>2 (20.0)</td>
<td></td>
</tr>
<tr>
<td>18<n≤24</td>
<td>1 (4.3)</td>
<td>0</td>
<td>1 (10.0)</td>
<td></td>
</tr>
<tr>
<td>Treatment lag (mo)</td>
<td>1.09 ± 1.8 (0–9)</td>
<td>0.77 ± 0.6 (0–2)</td>
<td>1.50 ± 2.7 (0–9)</td>
<td>0.974</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td>0.580</td>
</tr>
<tr>
<td>Male</td>
<td>13 (56.5)</td>
<td>8 (61.5)</td>
<td>5 (50.0)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>10 (43.5)</td>
<td>5 (38.5)</td>
<td>5 (50.0)</td>
<td></td>
</tr>
<tr>
<td>Birth history</td>
<td></td>
<td></td>
<td></td>
<td>0.179</td>
</tr>
<tr>
<td>Non-specific</td>
<td>15 (65.2)</td>
<td>10 (66.7)</td>
<td>5 (50.0)</td>
<td></td>
</tr>
<tr>
<td>Abnormal</td>
<td>8 (34.8)</td>
<td>3 (37.5)</td>
<td>5 (50.0)</td>
<td></td>
</tr>
<tr>
<td>Brain magnetic resonance imaging</td>
<td></td>
<td></td>
<td></td>
<td>0.103</td>
</tr>
<tr>
<td>Non-specific</td>
<td>7 (30.4)</td>
<td>6 (46.2)</td>
<td>1 (10.0)</td>
<td></td>
</tr>
<tr>
<td>Abnormal</td>
<td>16 (69.6)</td>
<td>7 (53.8)</td>
<td>9 (90.0)</td>
<td></td>
</tr>
<tr>
<td>Developmental delay</td>
<td></td>
<td></td>
<td></td>
<td>0.161</td>
</tr>
<tr>
<td>Yes</td>
<td>20 (87.0)</td>
<td>10 (76.9)</td>
<td>10 (100)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>3 (13.0)</td>
<td>3 (23.1)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hypsarrhythmia at 1 mo after treatment</td>
<td></td>
<td></td>
<td></td>
<td>0.673</td>
</tr>
<tr>
<td>Resolving</td>
<td>8 (34.8)</td>
<td>5 (38.5)</td>
<td>3 (30.0)</td>
<td></td>
</tr>
<tr>
<td>Remain</td>
<td>15 (65.2)</td>
<td>8 (61.5)</td>
<td>7 (70.0)</td>
<td></td>
</tr>
<tr>
<td>Hypsarrhythmia at 3 mo after treatment</td>
<td></td>
<td></td>
<td></td>
<td>0.026</td>
</tr>
<tr>
<td>Resolving</td>
<td>15 (65.2)</td>
<td>11 (84.6)</td>
<td>4 (40.0)</td>
<td></td>
</tr>
<tr>
<td>Remain</td>
<td>8 (34.8)</td>
<td>2 (15.4)</td>
<td>6 (60.0)</td>
<td></td>
</tr>
<tr>
<td>Hypsarrhythmia at 6 mo after treatment</td>
<td></td>
<td></td>
<td></td>
<td>0.004</td>
</tr>
<tr>
<td>Resolving</td>
<td>18 (78.3)</td>
<td>13 (100)</td>
<td>5 (50.0)</td>
<td></td>
</tr>
<tr>
<td>Remain</td>
<td>5 (21.7)</td>
<td>0</td>
<td>5 (50.0)</td>
<td></td>
</tr>
</tbody>
</table>

Values are presented as mean±SD (range) or number (%).

*a*Calculated by chi-square test, independent t-test and Mann-Whitney U test.
including five cases (62.5%) of prematurity, four cases (50%) of hypoxic-ischemic encephalopathy, three cases (12.5%) of intraventricular hemorrhage, and one case (12.5%) of subgaleal hemorrhage. In addition, 20 of 23 patients (87.0%) had developmental delay. Abnormal brain MRI findings were shown in 16 patients (69.6%). The most common abnormal findings were hypoxic ischemic encephalopathy (five cases) and periventricular leukomalacia (three cases).

Response of patients to VGB treatment was evaluated based on frequency of spasms. Number of patients in groups 1 (completely resolved), 2 (resolved more than 50%), and 3 (resolved less than 50%) were 13 (56.5%), six (26.1%), and four (17.4%), respectively. There was no difference in dose of VGB between the groups. No patient showed significant side effects to discontinue the drug. All patients had normal ophthalmologic findings.

Clinical remission of hypsarrhythmia on EEG was also checked. One month after using VGB, the pattern of hypsarrhythmia was resolved in eight patients (34.8%). After 3 months of treatment with VGB, 15 patients (65.2%) showed clinical remission of hypsarrhythmia. After 6 months of VGB treatment, five of 23 patients (21.7%) still had hypsarrhythmia.

Analysis of age distribution at diagnosis showed that the average age at diagnosis in the treatment responder group (5.61 ± 2.5 months) was younger than that in the treatment non-responder group (9.40 ± 6.2 months). Onset age of seizures was also younger in the treatment responder group (4.89 ± 2.6 months) than that in treatment non-responder group (7.90 ± 4.5 months). All patients in the treatment responder group started treatment for seizure before 12 months of age. However, neither age at diagnosis nor onset age showed statistically significant association with treatment response (P = 0.058 and P = 0.056).

Average treatment lag was 0.77 ± 0.6 months in the treatment responder group (13 patients) and 1.50 ± 2.7 months in the treatment non-responder group (10 patients). Although treatment lag was longer in the treatment non-responder group than that in the treatment responder group, the difference between the two was not statistically significant (P = 0.056).

In the treatment responder group (13 patients), three patients (37.5%) presented with abnormal birth history. In the treatment non-responder group (10 patients), five patients (50%) had remarkable birth history. Although birth history was more remarkable in the treatment non-responder group, the difference was not statistically significant (P = 0.179). Seven patients (53.9%) in the treatment responder group and nine patients (90.0%) in the treatment non-responder group had abnormal brain MRI findings. Ten of 13 patients (76.9%) in the treatment responder groups and 10 patients (100%) in the treatment non-responder group had developmental delay. However, neither brain MRI findings nor developmental delay showed statistically significant differences between the two groups (P = 0.103 and P = 0.161, respectively).

Regarding clinical remission of hypsarrhythmia, at 1 month after treatment, 61.5% (eight patients) in the treatment response group and 70% (seven patients) in the treatment non-responder group still presented with hypsarrhythmia, showing no significant difference between the two groups (P = 0.673). At 3 months after treatment, 84.6% (11 patients) in the treatment responder group appeared to have clinical remission of hypsarrhythmia whereas 40% (four patients) in the treatment non-responder group presented clinical remission of hypsarrhythmia on EEG, showing statistically significant difference between the two groups (P = 0.026). EEG test performed at 6 months after the initiation of treatment revealed that all patients (100%) in the treatment responder group and 50% patients in the treatment non-responder group had clinical remission on hypsarrhythmia, showing statistically significant difference between the two groups (P = 0.004).

Discussion

ACTH, steroid, and VGB are considered as drugs of choice for IS. However, ACTH is currently unavailable in South Korea while high dose of steroid is known to cause various side effects on endocrine system of patients. On the other hand, VGB is an initial therapy that is effective and relatively safe in children with IS. Previous studies have reported that about 35% to 80% of patients become seizure free after treating with VGB [18-20]. In our study, 56.5% of patients achieved seizure free when they used VGB as initial monotherapy, showing effects comparable to those of past researches.

There are various potential risk factors for IS, including sex, history of neonatal seizures, age of onset, abnormal brain MRI findings, treatment lag, and accessibility to medical institution for treatment [18,21,22]. The present study revealed that patients with clinical remission of hypsarrhythmia after 3 months from the initiation of treatment with VGB had better treatment response overall, supporting many articles showing that hypsarrhythmia was an important prognostic factor [22-25]. At 1 month after initiation of treatment with VGB, hypsarrhythmia was only resolved in 34.8% of patients. There was no statistically significant treatment response. However, EEG test performed at 3 months after the initiation of treatment with VGB revealed that 65% to 79% of patients showed clinical remission of hypsarrhythmia and achieved seizure free, consistent with existing researches.
Therefore, regular evaluation is important to determine patient’s outcome even if hypsarrhythmia persists in EEG test. Many animal studies and retrospective studies have discussed bilateral VFDs due to use of VGB [6,10-14]. However, no patient in the present study experienced such adverse drug reaction when regular eye examination was performed, consistent with a small prospective study recently conducted in Japan [16]. In addition, a recent study has reported that VFDs are caused by the disease itself rather than the use of VGB [17]. However, that study had limitations such as small sample size, short duration of study period, and lack of patient’s cooperation for eye examination that might have resulted in inaccuracy of eye examination. Hence, different methods such as VEP, funduscopic examination, and electroretinography need to be used to compensate the limitation of eye examination on children. Regular follow-up check-up is necessary even after completing treatment with VGB.

In conclusion, VGB is effective enough to become a first-line drug for children with IS. Better prognosis can be expected for patients with clinical remission of hypsarrhythmia on EEG after treatment initiation using VGB. Regular eye examination and follow-up check-up are also needed in parallel with the use of VGB. Since this is a retrospective study by analyzing medical records of a small number of patients, large-scale studies are needed in the future.

Conflicts of interest

No potential conflicts of interest relevant to this article was reported.

ORCID

In Goo Lee, https://orcid.org/0000-0001-8678-4050

References

Acute and chronic headaches are common in children. Most headaches can be classified as primary headaches. About 27% of girls and 20% of boys complain of frequent or severe headaches [1]. Chronic headache can be defined when the headache persists for more than 3 months and is accompanied by headache for more than 15 days per month. The probability of chronic headache in children is known to be 2% to 4% in female children and 0.8% to 2% in male children. However, a chronic headache can be excluded from the class of chronic headaches in the case of an underlying disease or structural abnormality [2]. Headaches from structural causes are very rare in children [1]. Nasal polyps are benign polypoidal masses arising mainly from chronic inflammation and edema of the mucous membranes in the nose and paranasal sinuses [3]. The presenting symptoms of nasal polyps include nasal obstruction, rhinorrhea, postnasal drip, anosmia, and headache. Symptoms can vary depending on the site and size of the polyps, but a severe headache is a rare symptom in children [4]. This paper reports a case of antrochoanal polyp with a severe headache in child.

The patient, an 8-year-old girl, complained of a headache that had been present for approximately 3 months. Symptoms worsened one month ago, and there the analgesic did not have an effect. The headache was usually a dull pain on the whole area of the head, with the greatest pain on the left parietal region, and each episode lasted for about 4 hours. There was no aura, and symptoms were aggravated by walking or moving the temporomandibular joints when eating. The symptoms were relieved when the patient was lying down and resting. The patient did not experience discomfort due to symptoms such as nasal obstruction or rhinorrhea, but she could not consume any food due to the pain. The patient reported having previously been healthy and had no history of allergy. Her family history was nonspecific. At the time of admission, the patient’s blood pressure was 110/66 mm Hg, and there were no abnormal findings from the physical examination. We obtained brain magnetic resonance image (MRI) for a severe headache, which revealed sinusitis in the left ethmoidal, and both sphenoidal and right maxillary sinus and nasal polyp in the left sphenoethmoidal recess (Fig. 1A and B).

We consulted the department of otorhinolaryngology and executed paranasal sinus computed tomography, which revealed an antrochoanal polyp in the left sphenoethmoidal recess with sphenoid sinus widening, and associated sinusitis in the left ethmoidal and sphenoidal sinuses (Fig. 1C and D). The patient was taken to the endoscopic sinus surgery for the removal of polyp, and the endoscopic examination yielded...
After surgery operation, the patient progressed very well and experienced complete relief of her severe headache without any additional medication including analgesic and antibiotic therapy. She remained asymptomatic and disease-free, at the 4-month follow-up.

Nasal polyps can be seen in 0.2% to 1% of the total population, of which antrochoanal polyps account for 33% of children. The most common nasal polyp is cystic fibrosis. However, cystic fibrosis is mainly observed in children younger than age 12. Antrochoanal polyp is the most common type of choanal polyp, and the most common symptom is obstruction of the nasal passage. Symptoms such as rhinorrhea, epistaxis, and allergy-related symptoms may also be present. As in our case, polyp can cause obstructive sleep symptoms, proptosis, and diplopia. Headaches can be seen in 15.7% of children and 37.5% in adults [4]. How-

Fig. 1. Brain magnetic resonance image showed (A, B) sinusitis in the left ethmoid, sphenoid, right maxillary sinus, and nasal polyp in the left sphenoidomoidal recess (white arrows) and (C, D) Paranasal sinus computed tomography showed antrochoanal polyp in the left sphenoidomoidal recess with sphenoid sinus widening (black arrows), and associated sinusitis in the left ethmoid and sphenoid sinuses.

Fig. 2. Left nasal cavity endoscopic view showed antrochoanal polyp (white arrow).
ever, it is not easy to distinguish between headaches attributed to polyps or chronic headaches. A report on the relationship between chronic daily headaches and quality of life (QOL), shows that QOL decreases as the use of analgesics increases. It is known that the progression to chronic headache rather than the intensity of pain affects QOL more. It is also known that 25.4% of chronic headache patient have experienced drug overdose [5]. Therefore, it is necessary to provide proper evaluation and management for secondary headaches. In the case of antrochoanal polyp, such as those which our patient had, surgery can be the primary treatment [3]. However, these surgical approaches require long-term prognosis study and follow-up because of the risk of developing teeth, bone growth and facial hyperesthesia, but the research involving children is still limited [4]. In our case, the patient, who was consistently medicated but no improvement of signs, did not complain of a headache after endoscopic polyp removal. Therefore, after surgical treatment, headache improved rapidly, and the origin of headache attributed to disorder of the nasal septum, mucosa, and infection could be excluded.

On histopathology, allergic polyps are more common in children than are inflammatory polyps. Therefore, medical treatment such as oral and topical nasal steroid administration may necessary if allergy polyps are present [4]. However, as in our case, the headache was completely relieved without common symptoms, such as nasal obstruction and rhinorrhea even though there was no additional antibiotic therapy.

In summary, this case presents a child patient with antrochoanal polyp and severe headache symptoms. She was diagnosed based on clinical features and brain MRI. The surgery completely relieved her severe headache.

Conflicts of interest

No potential conflicts of interest relevant to this article was reported.

ORCID

Young Se Kwon, https://orcid.org/0000-0003-4570-7037

References

Rotavirus infection–associated posterior reversible encephalopathy syndrome

Da Jeong Lee, MD1, Jon Soo Kim, MD2

1Department of Pediatrics, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Korea
2Department of Pediatrics, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea

Rotavirus is an important cause of severe gastroenteritis in infants and children. Generally, rotavirus infections are self-limiting benign diseases but occasionally can cause a wide range of neurological manifestations, including benign febrile or afebrile convulsions, meningoencephalitis, cerebellitis, and lethal encephalitis or encephalopathy [1]. However, it is unclear how rotavirus can affect the central nervous system without direct invasion.

Posterior reversible encephalopathy syndrome (PRES) is a well-recognized clinical disorder with typical neuroimaging findings consisting of mostly transient bilateral gray and white matter abnormalities in the posterior cerebral hemispheric regions and cerebellum [2]. The common clinical symptoms are headache, confusion, seizures, and visual disturbances such as cortical blindness. These symptoms usually recover without sequelae following appropriate treatment. Common precipitants are sudden elevations of blood pressure, renal failure, fluid restriction, and treatment with immunosuppressive drugs such as cyclosporine [3]. Recently, studies related to infection-associated PRES have been published [2,4]. We describe the case of a 6-year-old boy with rotavirus gastroenteritis who developed clinical and radiological manifestations consistent with PRES.

A previously healthy 6-year-old boy was referred to the pediatric emergency room with a 4-day history of vomiting and abdominal pain despite being treated with fluid therapy at a private clinic. His development was normal, and his past medical history was unremarkable. On examination, the patient was conscious, mildly dehydrated, and afebrile. At the time of admission, his blood pressure was 110/70 mm Hg (normal range, 97 to 115/57 to 76) and heart rate was 90 beats/minute (normal range, 75 to 118). The boy experienced sudden visual and consciousness disturbances on the day of hospital admission for fluid treatment. A few hours later, he had a generalized tonic convulsion for 3 minutes without definite fever. The results of a routine blood test at that time showed no abnormalities except for mildly elevated inflammatory markers: white blood cell count, 16.3 × 10^3/μL; hemoglobin, 14.9 g/dL; platelet count, 426 × 10^3/μL; total CO₂, 26.7 mmol/L; sodium, 134 mEq/L; potassium, 3.7 mEq/L; chloride, 98 mEq/L; C-reactive protein, 1.40 mg/dL; glucose, 151 mg/dL; ammonia, 26 μmol/L; and calcium ionized, 1.23 mmol/L. His blood pressure increased slightly to 133/85 mm Hg but remained relatively stable.

We announced this report as a poster presentation in 43th meeting of Korean Child Neurology Society, 2017.
demonstrated bilateral multifocal patchy (more prominent in the left) increased fluid attenuated inversion recovery (FLAIR) signal intensity (negative on diffusion-weighted MRI) at both occipito-parietal cortices, and some nearby white matter areas exhibited slight obliteration (Fig. 1). Rotavirus antigen was detected in a stool specimen by latex agglutination. Parents remembered that their child had not been vaccinated with rotavirus and this was the spring of the epidemic of rotavirus infection. Electroencephalography showed semirhythmic high amplitude 1.5 to 2 Hz delta activities on both occipital areas (Fig. 2).

We immediately administered intravenous methylprednisolone (30 mg/kg/day for 3 days) and continued conservative treatments. MRI taken 12 hours later showed interval resolution of previously noted vasogenic edema, gyral swelling, and decreased FLAIR signal intensity (Fig. 1). His clinical condition improved over the next 2 days. Visual evoked potential testing revealed a delay of evoked potential latencies in the left eye. He was discharged on hospital day 10 without any neurologic complications. Two weeks later, follow-up brain MRI showed that the previous lesions were disappeared (Fig. 1).

In this case, rotavirus gastroenteritis developed in a patient who was older than most patients with rotavirus. Convulsive symptoms related to rotavirus infection may occur as PRES without definite fluctuation of blood pressures. Approximately one-third of patients with PRES have normal or only mildly increased blood pressure, though most are hypertensive [4,5]. PRES is an increasingly recognized disorder readily diagnosed via brain MRI in clinical practice. There is a wide clinical spectrum of both symptoms and triggers, and yet it remains incompletely understood. The most widely accepted theory is that severe hypertension interrupts brain autoregulation [5]. In patients with impaired cerebral autoregulation, uncontrolled hypertension leads to hyperperfu-

Fig. 1. Brain magnetic resonance imaging (A, B) axial fluid attenuated inversion recovery (FLAIR) obtained 12 hours after the onset of symptoms showing bilateral multifocal patchy hyperintensity at the both parietooccipital, left high frontal cortex, and some nearby white matter areas. Axial FLAIR (C) obtained 24 hours after the onset of symptoms showing interval resolving previous vasogenic edema, gyral swelling, and hyperintensened lesions, and axial T2-weighted imaging (D) revealed normal finding. After 2 weeks, axial FLAIR (E) and T2-weighted imaging (F) showed interval normalized, disappeared previous lesions.

https://doi.org/10.26815/acn.2019.00101
and cerebral vessel damage, which can cause fluid to leak into the brain parenchyma, eliciting vasogenic edema [5]. However, as mentioned earlier, a significant proportion of patients do not demonstrate hypertension. An alternative theory is that systemic inflammation causes endothelial dysfunction [4]. In a systemic inflammatory process such as sepsis, eclampsia, transplantation, and autoimmune disease, the vasoconstriction that occurs during autoregulation could exacerbate pre-existing inflammatory endothelial dysfunction, causing hypoxia and subsequent vasogenic edema [5]. We can explain why a typical PRES without hypertension developed in this case of infection-associated PRES. However, we are not sure whether age affected the patient’s symptoms. There have been only two cases reported so far: parainfluenza virus infection in an adult and rotavirus infection in an infant [4,5]. In other words, infection-associated PRES, as well as hypertension-associated PRES, contribute endothelial dysfunction to the pathophysiology of this clinical-radiological syndrome.

In summary, this case describes a patient with rotavirus infection-associated PRES with a good prognosis. Pediatricians should be well aware that rotavirus gastroenteritis-induced convulsions have a wide spectrum and may be related to reversible posterior leukoencephalopathy. Prompt diagnosis and treatment, including stopping precipitating factors when possible, are crucial to achieving good reversibility.

Conflicts of interest

No potential conflicts of interest relevant to this article were reported.

ORCID

Jon Soo Kim, https://orcid.org/0000-0003-2586-1942

References

Instructions to authors

General information

Annals of Child Neurology is an official publication of the Korean Child Neurology Society. Its formal abbreviated title is "Ann Child Neurol". It is a peer-reviewed open access journal of medicine published in English. The journal was launched in September 30th, 1993 under the title of 'Journal of the Korean Child Neurology Society' until December 31st, 2018 (pISSN 1226-6884). Since 2019, the title is now changed to 'Annals of Child Neurology'. The Journal is published four times per year on the last day of January, April, July, and November. Anyone who would like to submit a manuscript is advised to carefully read the aims and scope section of this journal. Manuscripts submitted to Annals of Child Neurology should be prepared according to the following instructions. For issues not addressed in these instructions, the author is referred to the International Committee of Medical Journal Editors (ICMJE) "Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals" (http://www.icmje.org/recommendations/).

Aims and scope

Annals of Child Neurology is an interdisciplinary peer-reviewed biomedical journal publishing articles in the fields of child neurology, pediatric neurosurgery, pediatric neuroradiology, child psychiatry, pediatric neuropsychology, developmental and behavior pediatrics, pediatric neuroscience, and developmental neurobiology. The aims of Annals of Child Neurology are to contribute to the advancements in the fields of pediatric neurology through the scientific reviews and interchange of all of pediatric neurology. It aims to reflect the latest clinical, translational, and basic research trends from worldwide valuable achievements. In addition, genome research, epidemiology, public education and clinical practice guidelines in each country are welcomed for publication.

Focusing on the needs of neurologic patients from birth to age 18 years, Annals of Child Neurology covers topics ranging from assessment of new and changing therapies and procedures; diagnosis, evaluation, and management of neurologic, neuropsychiatric, and neurodevelopmental disorders; and pathophysiology of central nervous system diseases.

Area of specific interest include the following:

behavioral neurology & neuropsychiatry, clinical neurophysiology, epilepsy, headache medicine, neurocritical care, neurodevelopmental disabilities, neurogenetics, neuroimaging, neuromuscular medicine, neuroimmunology and inflammation, neuro-oncology, sleep medicine, vascular neurology, as well as other diseases affecting the developing nervous system.

Acceptance for publication of submitted manuscript is determined by the editors and peer reviewers, who are experts in their specific fields of pediatric neurology. The journal includes the following sections: original articles, reviews, letters to the editor. The editorial board invites articles from international studies or clinical, translational, and basic research groups. Supplements can be published when they are required.

Research and publication ethics

The Journal adheres to the guidelines and best practices published by professional organizations, including Recommendations from ICMJE and Principles of Transparency and Best Practice in Scholarly Publishing (joint statement by COPE, DOAJ, WAME, and OASPA; http://doaj.org/bestpractice/).

1. Authorship and author’s responsibility

Authorship credit should be based on: 1) substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; 2) drafting the article or revising it critically for important intellectual content; 3) final approval of the version to be published; and 4) agreeing to be accountable for all aspects of the work in ensuring that the questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Authors should meet these 4 conditions.

Any requests for such changes in authorship (adding author(s), deleting author(s), or re-arranging the order of authors) after initial manuscript submission and before publication should be explained in writing to the editor in a letter or email from all authors. This letter must be signed by all authors of the paper. A copyright assignment must be completed by every author.

There is no limitation on the number of authors. If any persons who do not meet the above four criteria, they may be placed as contributors in the Acknowledgments section. Description of co-first authors or co-corresponding authors is also accepted if the corresponding author believes that such roles existed in...
contributing to the manuscript.

A list of each author’s role and ORCID ID should accompany the submitted paper.

The corresponding author takes primary responsibility for communicating with the journal during the manuscript submission, peer review, and publication process and typically ensures that all the journal’s administrative requirements, such as providing details of authorship, ethics committee approval, and clinical trial registration documentation and gathering conflict of interest forms and statements, are properly completed, although these duties may be delegated to one or more coauthors. The corresponding author should be available throughout the submission and peer review processes to respond to editorial queries in a timely manner and to critiques of the work and should cooperate with any requests from the journal for data, additional information, or questions about the paper even after publication.

2. Originality, plagiarism, and duplicate publication

All submitted manuscripts should be original and should not be in consideration by other scientific journals for publication. Any part of the accepted manuscript should not be duplicated in any other scientific journal without the permission of the Editorial Board, although the figures and tables can be used freely if the original source is verified according to Creative Commons license. It is mandatory for all authors to resolve any copyright issues when citing a figure or table from other journal that is not open access.

Submitted manuscripts are screened for possible plagiarism or duplicate publication by Crossref Similarity Check (https://www.crossref.org/get-started/similarity-check/) upon arrival. If plagiarism or duplicate publication related to the papers of this journal is detected, the manuscripts may be rejected, the authors will be announced in the journal, and their institutions will be informed. There will also be penalties for the authors.

3. Secondary publication

It is possible to republish manuscripts if the manuscripts satisfy the condition of secondary publication of the Recommendations from ICMJE. These are:

- The authors have received approval from the editors of both journals (the editor concerned with the secondary publication must have access to the primary version).
- The priority for the primary publication is respected by a publication interval negotiated by editors of both journals and the authors.
- The paper for secondary publication is intended for a different group of readers; an abbreviated version could be sufficient.
- The secondary version faithfully reflects the data and interpretations of the primary version.
- The secondary version informs readers, peers, and documenting agencies that the paper has been published in whole or in part elsewhere—for example, with a note that might read, “This article is based on a study first reported in the [journal title, with full reference]”—and the secondary version cites the primary reference.
- The title of the secondary publication should indicate that it is a secondary publication (complete or abridged republication or translation) of a primary publication. Of note, the United States National Library of Medicine (NLM) does not consider translations to be “republications” and does not cite or index them when the original article was published in a journal that is indexed in MEDLINE.

4. Conflict-of-interest statement

The corresponding author must inform the editor of any potential conflicts of interest that could influence the authors’ interpretation of the data. Conflict of interest exists when an author or the author’s institution, reviewer, or editor has financial or personal relationships that inappropriately influence or bias his or her actions. Such relationships are also known as dual commitments, competing interests, or competing loyalties. These relationships vary from being negligible to having great potential for influencing judgment. Not all relationships represent true conflict of interest. On the other hand, the potential for conflict of interest can exist regardless of whether an individual believes that the relationship affects his or her scientific judgment. Financial relationships such as employment, consultancies, stock ownership, honoraria, and paid expert testimony are the most easily identifiable conflicts of interest and the most likely to undermine the credibility of the journal, the authors, or of the science itself. Conflicts can occur for other reasons as well, such as personal relationships, academic competition, and intellectual passion (http://www.icmje.org/conflicts-of-interest/). If there are any conflicts of interest, authors should disclose them in the manuscript. The conflicts of interest may occur during the research process as well; however, it is important to provide disclosure. If there is a disclosure, editors, reviewers, and reader can approach the manuscript after understanding the situation and background for the completed research.

5. Statement of human and animal rights

Clinical research should be conducted in accordance with the WMA Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects (https://www.wma.net/what-we-do/medical-ethics/declaration-of-helsinki/). Clinical
studies that do not meet the Helsinki Declaration will not be considered for publication. For publication, the human subjects’ identifiable information, such as the patients’ names, initials, hospital numbers, dates of birth, or other protected healthcare information should not be disclosed. For animal subjects, the research should be performed based on the National or Institutional Guide for the Care and Use of Laboratory Animals, and the ethical treatment of all experimental animals should be maintained.

6. Statement of informed consent and institutional review board approval
Copies of written informed consents should be kept for studies on human subjects. For the clinical studies with human subjects, there should be a certificate, an agreement, or the approval by the Institutional Review Board (IRB) of the author’s affiliated institution. If necessary, the editor or reviewers may request copies of these documents to resolve questions about IRB approval and study conduct. In addition, for studies conducted with human subjects, the method by which informed consent was obtained from the participants also needs to be stated in the Methods section.

7. Registration of the clinical trial research
It is recommended that any research that deals with a clinical trial be registered with a primary national clinical trial registration site, such as http://cris.nih.go.kr, or other sites accredited by the World Health Organization as listed at http://www.who.int/ictrp/en/ or ClinicalTrial.gov (https://clinicaltrials.gov), a service of the US National Institutes of Health.

8. Process to manage the research and publication misconduct
When the Journal faces suspected cases of research and publication misconduct such as a redundant (duplicate) publication, plagiarism, fabricated data, changes in authorship, undisclosed conflicts of interest, an ethical problem discovered with the submitted manuscript, a reviewer who has appropriated an author’s idea or data, complaints against editors, and other issues, the resolving process will follow the flowchart provided by the Committee on Publication Ethics (http://publicationethics.org/resources/flowcharts/). The discussions and decisions concerning the suspected cases will be carried out by the editorial board.

9. Editorial responsibilities
The editorial board will continuously work to monitor and safeguard publication ethics: guidelines for retracting articles; maintaining the integrity of academic records; precluding business needs from compromising intellectual and ethical standards; publishing corrections, clarifications, retractions, and apologies when needed; and excluding plagiarism and fraudulent data. The editors maintain the following responsibilities: to reject and accept articles; to avoid any conflict of interest with respect to articles they reject or accept; to promote publication of corrections or retractions when errors are found; and to preserve the anonymity of reviewers.

10. Data Sharing statement

Copyrights/Open Access/Deposit/Archiving policy

1. Copyright
Copyright to all the published material is owned by the Korean Child Neurology Society. The authors should agree to the copyright transfer during the submission process. The corresponding author is responsible for submitting the copyright transfer agreement to the Publisher.

2. Open access policy
Annals of Child Neurology is an open access journal and full text PDF files are also available at the official website (http://annchildneurol.org). Articles are distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted, non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited. To use any tables or figures published in Annals of Child Neurology in other periodicals, books, or media for scholarly and educational purposes, permission by the publisher of Annals of Child Neurology is not necessary.

3. Deposit policy
According to the deposit policy (self-archiving policy) of Sherpa/Romeo (http://www.sherpa.ac.uk), authors cannot archive preprints (i.e., pre-refereeing) but archive post-prints (i.e., final draft post-refereeing) and publisher’s version/PDF.

4. Archiving policy
Annals of Child Neurology provides the electronic backup and
preservation of access to the journal content in the event the journal is no longer published by archiving in National Library of Korea.

Manuscript submission

Authors should submit manuscripts via the electronic manuscript management system (http://submit.annchildneurol.org) for Annals of Child Neurology. Please log in first as a member of system and follow the directions. Manuscripts should be submitted by the corresponding author, who should indicate the address, phone number, and e-mail address for correspondence in the title page of the manuscript. The revised manuscript should be submitted through the same web system under the same identification numbers.

1. To submit your manuscript, go to http://annchildneurol.org. Instructions for online submission are located on this website.
2. There are no author submission fees or other publication-related charges. All cost for the publication process is supported by the Publisher. Annals of Child Neurology is a so-called platinum open access journal which does not charge author fees.
3. Confirmation of receipt will be issued when the submission process is complete. The receipt can be downloaded from website.
4. Online submission process:
 1) Go to http://submit.annchildneurol.org.
 2) Log in (or click the ‘registration’ option, if you are a first-time user of http://submit.annchildneurol.org).
 3) Click on ‘new submissions’.
 4) Check and confirm ‘author’s manuscript check list’.
 5) Proceed with the following 8-step process.
 Step 1. Fill in the manuscript type, title, running title, abstract, keywords and corresponding author.
 Step 2. Fill in the author names and affiliation.
 Step 3. Write down the additional notes to Editor-in-Chief in cover letter field and respond to the additional information below.
 Step 4. Suggest reviewers. Suggesting 2 reviewer(s) is required for submission.
 Step 5. Upload manuscript file and copyright transfer form.
 Step 6. When the conversion is completed, please click the “Make PDF” button.
 Step 7. Confirm preview contents. If you agree to submit the manuscript, please click "submit" button.
 Step 8. Your submission is completed. You will receive your registration number or return notice via email.
5. If you have any questions about the online submission process, contact the Editorial Office by e-mail at editor@annchildneurol.org or by telephone at +82-2-2228-2050.

Editorial and peer review process

All manuscripts are initially reviewed by a Annals of Child Neurology editor. Submissions that are clearly outside the scope of Annals of Child Neurology will be declined without further review. Manuscripts that are so poorly written or incomplete that it hampers the review process will also be declined but with the option of resubmission if the concerns have been addressed. All submitted manuscripts are analyzed with plagiarism detection software prior to undergoing editorial review. Manuscripts are sent to the two most relevant investigators available for review of the contents. The editor selects peer referees by recommendation of Annals of Child Neurology’s editorial board members or from the Board’s specialist database.

The journal uses a single-blind peer review process: peer reviewer identities are kept confidential (unless reviewers choose to reveal their names in their formal reviews); author identities are made known to reviewers. The existence of a manuscript under review is not revealed to anyone other than peer reviewers and editorial staff. Peer reviewers are required to maintain confidentiality about the manuscripts they review and must not divulge any information about a specific manuscript or its content to any third party without prior permission from the journal editors. Information from submitted manuscripts may be systematically collected and analyzed as part of research to improve the quality of the editorial or peer review process. Identifying information remains confidential. Final decisions regarding manuscript publication are made by an editor who does not have any relevant conflicts of interest. All correspondence, including the editor’s decision and requests for revisions, will be conducted by e-mail.

Accepted: The manuscript will be forwarded to the publisher without further corrections.

Minor revisions: The author should address the comments from the reviewers, which will be confirmed by the reviewers before being sent to the publisher.

Major revisions: The author should address the comments from the reviewers and make the appropriate corrections for review by the three reviewers.

Rejection: When one out of the two reviewers rejects the manuscript, the final decision is made by the editorial committee.

The time to first decision without review will normally be made within 5 days (median). Within 14 days after the agreement of
review by the reviewers, the reviewers’ comments will then be
sent to the corresponding authors. Revised manuscripts must be
submitted online by the corresponding author. Failure to resubmit
the revised manuscript within 2 weeks of the editorial decision is
regarded as a withdrawal. The editorial office should be notified if
additional time is needed or if an author chooses not to submit a
revision.

All authors are required to confirm the following conditions of
publication prior to their manuscript being considered:
a. If the manuscript does not have a new result or conclusion,
then it should not have the same title as a previously published
review article.
b. Once a case has been published in an original paper, it may not
be reproduced as a case report. However, only in circumstances
in which a novel diagnostic method, a novel therapeutic trial,
or a previously unknown accompanying condition is found
will the editorial board determine the possibility of acceptance.
c. Clinical trials on drugs with commercial implications will be
reviewed by the proper subcommittee or subspecialty before
being reviewed for publication.
d. Clinical letters of previously published cases will not be
accepted. The editorial board will make an exception only if
the case is very rare. The Annals of Child Neurology index
should be reviewed before the submission of clinical letters.
e. Rejected manuscripts may not be resubmitted.
f. The manuscript will be rejected if the author does not address
the comments made by the reviewer or the manuscript does
not follow the required guidelines.

Manuscript preparation

1. General principles

1) Annals of Child Neurology publishes original articles, reviews,
letters to the editor, and editorials.

2) The manuscript should not have been published previously,
and not have been submitted for publication elsewhere. Any
conflicts of interest of all listed authors should be stated.

3) The manuscript should be written according to the prescribed
format. If not, the editorial board may return it before
reviewing. The editorial board decides on publication and may
modify a portion of the text with little effect on the original.

4) The manuscript must be written in English. Authors
(particularly non-native English speakers) who submit the
original article or letters to editor should check their manuscript
by using professional editing service and submit the manuscript
with a certificate of English review, including the name,
institution, position, statement of approval, and signature with
unstructured format.

5) The text of the manuscript, including tables and their footnotes
and figure legends, must be double-spaced and in standard
12-point font on A4 paper size with left and right margin spaces
of 2 cm and top and bottom margins of 3 cm.

6) Except for units of measurement, abbreviations are strongly
discouraged. Do not use abbreviations in the title or abstract
and limit their use in the text. Expand all abbreviations at first
mention in the text.

7) Measurements of length, height, weight, and volume should
be reported in metric units (meter, kilogram, or liter) and
laboratory values should be displayed in International System
of Units (SI).

8) The number of pages of manuscripts of reviews and original
articles has no limitation but no more than 10 printed pages
are recommended. Letters to editor should be written in a
maximum of 2 printed pages.

2. Cover letter

The cover letter accompanying the manuscript must specify the
type of manuscript and include statements on ethical issues and
conflicts of interest, and complete contact information for the
corresponding author.

The cover letter should include the following statement: “All
authors have read and approved the submitted manuscript, the
manuscript has not been submitted elsewhere nor published
elsewhere in whole or in part, except as an abstract (if relevant).”
The cover letter may include the names of up to 3 potential
reviewers whom the authors would like to suggest, especially
members of the editorial board. The authors may also include the
names of up to 3 reviewers whom they would like not to evaluate
their submission. The editor ultimately decides who will review
the manuscript.

3. Original articles

Original articles are papers reporting the results of basic or clinical
investigations, which are sufficiently well documented to be
acceptable to critical readers. The manuscript should be prepared
according to Recommendations from ICMJE. The manuscript
should have the following sequence: Title page, Abstract and
Keywords, Introduction, Materials and Methods, Results,
Discussion, Acknowledgment, References, Tables, and Figure
Legends. All pages should be numbered consecutively in the
middle of the bottom margin, starting with the title page.

Title page

The title page should contain the following information: (1) title;
(2) author list (full names of authors); (3) name of the institutions at which the work was performed; (4) acknowledgement of research support; (5) name, address, telephone, fax number, and e-mail address of the corresponding author; (6) a running title should be written of 10 words or less.

Abstract and keywords
The abstract should be a single paragraph of less than 250 words, and describe concisely, the purpose, methods, results, and conclusion of the study, in a structured format. Abstracts of letters to editor may have an unstructured format with the same restriction on word count. Abbreviations, if needed, should be kept to an absolute minimum, and their first use should be preceded by the full term in words. The abstract should not include footnotes, references, or tables. The abstract can be modified by an English language reviewer who is appointed by the editorial board. A maximum of 5 keywords should be listed at the end of the abstract to be used as index terms. For the selection of keywords, refer to Medical Subject Headings (MeSH; https://meshb.nlm.nih.gov/search).

Introduction
The introduction should provide the background of the study and state the specific purpose of research or hypothesis tested by the study. It may mention previous publications most closely related to the article.

Materials and Methods
The materials and study design should be presented in detail. In experimental research, methods should be described in such a manner that the experiments can be reproduced by the readers. The sources of special chemicals or preparations should be given (name of company, city and state, and country). Clinical studies or experiments using laboratory animals or pathogens should include approval of the studies by relevant committees. A statement concerning IRB approval and consent procedures must be presented.

Clearly describe the selection of observational or experimental participants (healthy individuals or patients, including controls), including eligibility and exclusion criteria and a description of the source population. Because the relevance of such variables as age, sex, or ethnicity is not always known at the time of study design, researchers should aim for inclusion of representative populations into all study types and at a minimum provide descriptive data for these and other relevant demographic variables.

Ensure correct use of the terms sex (when reporting biological factors) and gender (identity, psychosocial or cultural factors), and, unless inappropriate, report the sex and/or gender of study participants, the sex of animals or cells, and describe the methods used to determine sex and gender. If the study was done involving an exclusive population, for example in only one sex, authors should justify why, except in obvious cases (e.g., prostate cancer). Authors should define how they determined race or ethnicity and justify their relevance.

Results
This section should include a concise textual description of the data presented in the tables and figures. Excessive repetition of table or figure contents should be avoided.

Discussion
Observations pertaining to the results of research and other related materials should be interpreted for your readers. Emphasize new and important observations; do not merely repeat the contents of the results. Explain the meaning of the observed opinion along with its limits, and within the limits of the research results connect the conclusion to the purpose of the research. In a concluding paragraph, summarize the result and its meaning.

Acknowledgment
The acknowledgments section should contain brief statements of assistance and financial support. Any other matters associated with research funds, facilities and drugs that were used in the study should also be given.

ORCID
Open researcher and contributor IDs (ORCID) are recommended for authors. To receive ORCID, authors should register on the ORCID website available from: https://orcid.org.

References
Reference citations in the text should be made with consecutive numbers in parenthesis (Vancouver style). References should be listed in the order of citation in the text, with the corresponding number. The reference style for journal articles is as follows: names of authors, full title of article, journal name abbreviated in accordance with MEDLINE, year, volume, and page numbers. List all authors when they are six or less; when they are seven or more, list the first six and add ‘et al.’ The names of all authors must be listed by the last name and the initials of the first and middle names. Papers in press may be listed with the journal name and tentative year of publication. The style for a chapter of a book is as follows: author and title of the chapter, editor of the book, title of the book, edition, volume, place, publisher, year, and page.
numbers. Cite unpublished data or personal communications in the text only and not in the reference list. Internet URLs should be as follows; authors’ names, website title, URL and the time of the latest update. All other references should be listed as shown in the Recommendations from ICMJE. Authors are responsible for the accuracy and completeness of their references. The maximum number of cited references should be 40 for original articles and 5 for letters to editor.

Examples of reference styles

1) Journal article

2) Book
 - Book
 - Book chapter
 - Abstract book or conference proceedings
 - Thesis

3) Website

Tables
 1) Each table should be inserted on a separate page, with the table number, table title and legend.
 2) The numbers of tables should be in Arabic numerals in their order of citation.
 3) Titles of tables should be concise using a phrase or a clause. The first character should be capitalized.
 4) Tables should be concise and not duplicate information found in figures.
 5) The significance of results should be indicated by appropriate statistical analysis.
 6) Unnecessary longitudinal lines should not be drawn. Horizontal lines should be used as sparingly as possible.
 7) All symbols and abbreviations should be described below the table.
 8) Use superscript letters (a, b, c) to mark each footnote and be sure each footnote in the table has a corresponding note. List abbreviations in the footnote section and explain any empty cells.
 9) All units of measurements and concentrations should be designated.

Figures and figure legends
 1) Figures should be submitted separately from the text the manuscript. All pictures and photographs should be of excellent quality and supplied as JPEG or TIFF files with resolution of more than 300 dpi. The preferred size of figure is 7.4×10.0 cm (3×4 inches). Except for particularly complicated drawings that show large amounts of data, all figures are published at one page or one column width. All kinds of figures may be reduced, enlarged, or trimmed for publication by the editor.
 2) Color figures and pictures will be published if the editor decides it is absolutely necessary.
 3) Figure numbers, in Arabic numerals, should appear in the figure legends. Arabic numerals should be used in the order in which the figures are referred to in the main text. In cases where more than two photographs are used with the same number, alphabet characters should be used next to the Arabic numeral (e.g.: Fig. 1A, Fig. 1B).
 4) All pictures and photographs should be described in the
legend with complete sentences rather than incomplete phrases or a clause.

5) All symbols and abbreviations should be described below the figure.

4. Other types of manuscripts
All other types of manuscripts should meet the above mentioned requirements.

1) Reviews articles
Reviews may be written by invitation by the editorial board and provide concise reviews of important subjects to medical researchers. are organized as follows: title page, abstract and keywords, introduction, main text, conclusion, acknowledgments, references, tables, figure legends, and figures. An abstract is required but it need not be structured.
Reviews should not exceed 7,000 words, include no more than 6 figures or tables and 150 references.

2) Letters to the editor
Letters to Editor is a type of brief communication on any topics that attract attention of journal readers. It should be brief, clear and conclusive. No abstraction is required. Body of the letter has no structure and the word count is limited to 1,000 words. It should be written in a maximum of 2 printed pages, less than 5 references, less than 2 table or figures, and less than 5 authors.

3) Editorial
Editorials are invited by the editors and should be commentaries on articles published recently in the journal. Editorial topics could include active areas of research, fresh insights, and debates in all fields of child nerology. Editorials should not exceed 1,000 words, excluding references, tables, and figures, and no more than 2 figures or tables and 10 references.

Manuscripts accepted for publication

1. Final version
After the paper has been accepted for publication, the author(s) should submit the final version of the manuscript. The names and affiliations of the authors should be double-checked and if the originally submitted image files were of poor resolution, higher resolution image files should be submitted at this time. The EPS, JPG, PPT, or TIF formats are the preferred digital files for photographic images. Symbols (e.g., circles, triangles, squares), letters (e.g., words, abbreviations), and numbers should be large enough to be legible even after on reduction to the journal’s column widths. All symbols must be defined in the figure captions. If references, tables, or figures are moved, added, or deleted during the revision process, renumber them to reflect the changes so that all tables, references, and figures are cited in numeric order.

2. Manuscript corrections
Before publication, the manuscript editor will correct the manuscript such that it meets the standard publication format. The author(s) must respond within 7 days when the manuscript editor contacts the author for revisions. If the response is delayed, the manuscript’s publication may be postponed to the next issue. The author should double-check for corrections in the content, title, affiliation, capitalization, locations of figures, and references. Corresponding authors are responsible for further corrections made after printing.

3. Gallery proof
The author(s) will receive the final version of the manuscript as a PDF file. Upon receipt, within 2 days, the editorial office (or printing office) must be notified of any errors found in the file. Any errors found after this time are the responsibility of the author(s) and will have to be corrected as an erratum.

4. Feedback after publication
If the authors or readers find any errors, or contents that should be revised, it can be requested from the Editorial Board. The Editorial Board may consider erratum, corrigendum or a retraction. If there are any revisions to the article, there will be a CrossMark description to announce the final draft. If there is a reader’s opinion on the published article with the form of Letters to the editor, it will be forwarded to the authors. The authors can reply to the reader’s letter. Letters to the editor and the author’s reply may be also published.

5. How the journal handle complaints and appeals
The policy of Annals of Child Neurology is primarily aimed at protecting the authors, reviewers, editors, and the publisher of the journal. If not described below, the process of handling complaints and appeals follows the guidelines of the Committee of Publication Ethics available from: https://publicationethics.org/appeals.

Who complains or makes an appeal?
Submitters, authors, reviewers, and readers may register complaints and appeals in a variety of cases as follows: falsification, fabrication, plagiarism, duplicate publication, authorship dispute, conflict of interest, ethical treatment of animals, informed consent, bias or unfair/inappropriate competitive acts, copyright, stolen data,
defamation, and legal problem. If any individuals or institutions want to inform the cases, they can send a letter via the contact page on our website: http://annchilneurol.org. For the complaints or appeals, concrete data with answers to all factual questions (who, when, where, what, how, why) should be provided.

Who is responsible to resolve and handle complaints and appeals? The Editor, Editorial Board, or Editorial Office is responsible for them. A legal consultant or ethics editor may be able to help with the decision making.

What may be the consequence of remedy? It depends on the type or degree of misconduct. The consequence of resolution will follow the guidelines of the Committee of Publication Ethics (COPE).

6. Page charge
There are no page charges to authors. All color figures and tables will be reproduced in full color in the online edition of Annals of Child Neurology at no cost to authors, but the complete cost in the printed version of the journal will be charged to the authors. Please contact the Editorial Office if you have any questions about potential fees.

7. Confirmation of acceptance
Once the manuscript is at the publisher, confirmation of acceptance by the Annals of Child Neurology may be issued.

8. E-publication ahead of print
All accepted manuscripts are subject to copyediting. Before publication, page proofs are sent to the corresponding author, who is responsible for verifying the final manuscript contents, including all copyediting changes. Once a manuscript has been typeset, copyedited, and approved by the editor and the authors, it will soon appear online in our “Ahead-of-Print” section.

Further information
Any correspondence, queries or additional requests for information on the manuscript submission process should be sent to Annals of Child Neurology editorial office as follows:
Editor-in-Chief: Soonhak Kwon, MD
E-mail: editor@annchilneurol.org
Telephone: +82-2-2228-2050
Copyright transfer agreement

The transfer of copyright from author to *Annals of Child Neurology* must be clearly stated in writing to enable the *Annals of Child Neurology* to assure maximum dissemination of the author’s work. Therefore, the following agreement, executed and signed by the author, is required with each manuscript submission.

In signing this Agreement:
1. I hereby warrant that this Article is an original work, has not been published before and is not being considered for publication elsewhere in its final form either in printed or electronic form,
2. I hereby warrant that I have obtained permission from the copyright holder to reproduce in the Article (in all media including print and electronic form) material not owned by me, and that I have acknowledged the source;
3. I hereby warrant that this Article contains no violation of any existing copyright or other third party right or any material of an obscene, indecent, libellous or otherwise unlawful nature and that to the best of my knowledge this Article does not infringe the rights of others;
4. I hereby warrant that in the case of a multi-authored Article you have obtained, in writing, authorization to enter into this Agreement on their behalf and that all co-authors have read and agreed the terms of this Agreement;
5. I will indemnify and keep indemnified the Editors, *Annals of Child Neurology* against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this Agreement.

Date: ____________________________

Name and Institution or company: __

Manuscript Title: __

<table>
<thead>
<tr>
<th>Name</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x
Author's checklist

1. General provisions
☐ The authors should ensure that the contents of the present manuscript have not been published nor intended to be published in other journals.
☐ The manuscript should be formatted as follows: A4 paper, 12 point font, left-aligned, double-spaced.
☐ An original article should be presented in the following order: cover page, abstract, keywords, introduction, methods, results, discussion, references, and captions and legends for tables and figures.

2. Cover page
☐ This section should indicate the contact information of the corresponding author: postal code, address, phone number, fax number, and email address.
☐ A running title should be given in 10 words or less.

3. Abstract and Keywords
☐ The abstract should be divided into Background and Purpose, Methods, Results, and Conclusions; it should be written in one paragraph that is within 250 words.
☐ Three to six keywords should be included (preferably those recommended in MeSH of Index Medicus; the first letter of each key word should be capitalized).

4. Main text
☐ The title should not include abbreviations; all the words must be spelled out.
☐ Information regarding approval of an institutional review board and obtaining informed consent should be mentioned in the Method section.
☐ References should be numbered in Arabic numbers in the order they are cited.
☐ Superscript numbers should come after commas and periods according to submission rules.
☐ When using abbreviations, their full forms should be used at first mention; abbreviations/acronyms should then be used consistently in further occurrences.
☐ Units of measure should be written in accordance with submission rules (except for % and °C, a space should come between the number and the unit of measure).
☐ For numbers, a comma should be inserted after every third digit.
☐ All statistical methods used should be described accurately in detail.

5. References
☐ In-text citations should be numbered and should correspond to the numbers in the references.
☐ Up to six authors should be mentioned. In case there are seven or more authors, “et al.” must come after the primary author.
☐ Official abbreviations of quoted journals must be used.
☐ Year, volume, and start page–end page of the quoted literature should be accurately mentioned.
☐ The first letter of the title of the quoted article should be capitalized.
☐ Compliance with quotation styles should be observed.
☐ The manuscript should comply with quotation rules in case a book has separate authors by chapter.

6. Table
☐ Each table must have its own title and be given a separate page.
☐ All abbreviations used in the table should be spelled out.
☐ All superscript numbers used in the table should comply with the contribution rules.

7. Figures
☐ Each figure should be produced in a separate file and should not be included in the main text.
☐ The file name of each figure should be the figure number.
☐ Figures can be black and white or in color; they will be published as submitted.
☐ The titles and legends of the figures should be concisely drafted on a separate page in English.
☐ The figures should be explained in complete sentences, not phrases or clauses.
☐ All abbreviations should be written out.
☐ When a figure contains several pictures, the explanation of the figure should be followed by that of each picture, distinguishing them as A, B, C, etc.
ONCE-DAILY
EXTENDED-RELEASE ANTIPELLEPTIC DRUG
KEPPRA®
(levetiracetam)

Inspired by patients. Driven by science.
선생님 곁에는 항상 GSK가 함께 하겠습니다

- GSK CNS팀 -

선생님 곁에는 항상 GSK가 함께 하겠습니다

- GSK CNS팀 -
WE
胃
NEED
ONE
모티리톤
기능성 소화불량의 3가지 원인을
하나로 해결하는 동아ST 모티리톤
그 트리플액션®을 직접 확인하십시오.
More free time in COPD

New paradigm in COPD treatment

- Muco-modulatory activity
- Bronchial anti-inflammatory activity
- Anti-oxidant activity
- Bacterial anti-adhesion activity

큐메시서방캡슐은 Topiramate 서방형 제제입니다.

국내 최초의 Topiramate 서방형 제제입니다.

복약편의성을 개선한 Topiramate 서방형 제제입니다.

FDA 허가를 받은 Topiramate 서방형 제제입니다.

25mg
50mg
100mg
200mg

References 2017-8-8_작성

SK 케마칼
Life Science Biz.

(cred) 성남시 분당구 문학로 310(성남동) 제출번호: 08-02-313 www.skchemical.com/bh

(cred) Qudexy XR (topiramate) extended-release capsules

(cred) SK 케마칼
Life Science Biz.

(cred) Qudexy XR (topiramate) extended-release capsules

(cred) 케마칼
Life Science Biz.
I.V.-Globulin SN inj. 10%

✓ 국내 최초 고항량 면역글로불린
✓ 대용량 제형으로 편의성 향상
✓ 투여시간 단축
소아·청소년기 LOPD에서 흔히 나타나는 증상

주요 증상

- 호흡곤란/반복한 호흡기 감염
- 설명할 수 없는 피로
- 지속적인 설사

소아·청소년기 후기 발병형 폴페병

만약 아이가 닦리기나 운동하는데 어려움을 느끼는 등의 근육약화가 있다면,

폴페병 검사를 서둘러 주세요.

폴페병은 치료 가능한 질환입니다.3-5

조기 진단과 치료는 특히

운동기능과 호흡기능 결과를 개선시킬 수 있습니다.3-6