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Purpose: We aimed to evaluate the utility of facial analysis technology for genetic diagnoses in a
typical pediatric genetic clinic.

Methods: A retrospective review identified children (aged <18 years) who had not previously re-
ceived a definitive genetic diagnosis and underwent a comprehensive genetic evaluation. Their
photographs and relevant clinical non-facial features were uploaded to the CLINIC application of
the Face2Gene web interface, and the resulting analysis was accessed and correlated to the mo-
lecular diagnosis.

Results: Of the 23 children included, the overall diagnostic yield in this study was 60.9% (14/23).
In total, 64.3% of patients had the correct condition suggested in the top 10 differential diagno-
ses. The gestalt similarity was only 55.6%, but the phenotypic features added by the clinician
showed a similarity of more than the medium level in all patients.

Conclusion: Qur data underscore the usefulness of facial analysis technology as an auxiliary
point-of-care tool in pediatric genetic clinics, and we also present some considerations to in-
crease accuracy.
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Findings

With recent remarkable advances in diagnostic and treatment tech-
nologies for genetic syndromes, a timely diagnosis has become
crucial [1]. However, establishing an accurate diagnosis remains a
lengthy, expensive, and expert-dependent process, especially con-
sidering the increasing number of possible rare syndromes [2]. Fa-
cial dysmorphology often offers valuable diagnostic clues, but in-
terpreting these facial features and identifying specific genetic syn-
dromes can pose a challenge, even for genetic experts [3,4]. Recent
studies have demonstrated the considerable potential of deep

learning-based facial analysis technologies as diagnostic tools for

genetic syndromes [1-6]. The aim of this study was to contribute
additional data on the utility of facial analysis technology for genet-
ic diagnosis in a typical pediatric genetic clinic.

A retrospective review was carried out from September 2020 to
August 2022 of patients treated at the clinic for rare genetic diseas-
es at Chungbuk National University Hospital. We identified chil-
dren under 18 years of age who had not previously received a de-
finitive genetic diagnosis and underwent a comprehensive genetic
evaluation. These patients sought consultation at the clinic for rare
genetic diseases for various reasons, including unexplained devel-
opmental delay, intellectual disability, and craniofacial dysmor-

phism. The clinician's discretion guided the conventional diagnos-
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tic investigations. Chromosomal microarray (CMA) and/or tar-
geted panel sequencing were employed as first-line tests, while
whole-genome sequencing (WGS) was utilized as a second-line
test when the genetic cause remained unidentified. Additional

confirmatory tests, such as G-banded karyotyping and methyla-

Table 1. Summary of 14 patients receiving genetic diagnosis

tion polymerase chain reaction assay, were conducted as needed.
All parents or legal guardians provided written informed consent
for image publication. Furthermore, at least one full frontal face
image was collected beforehand to validate the facial recognition

software for patients who later received a confirmed genetic diag-

a e . . Similarity .
Case  Sex Age (yr) HPO phenotype Genetic finding Diagnosis (OMIM) Gestalt  Feature Top 10 lists
FO1 F 3 Global DD, feeding difficulties PV_KLHL40 Nemaline myopathy None Med Included
in infancy, FTT, hypotonia  ¢.1582G>A(p.Glu528Lys) (#615340)
Hom
FO2 F 1.1 Global DD, ID, feeding diffi-  LPV_YY1 Gabriele-de Vries syndrome - - -
culty in infancy, FTT, hypo-  ¢.1130A>G(p.His377Arg) (#617557)
tonia, strabismus, seizure Het, de novo
Fo5 M 16.6  Global DD, ID, autistic behav- PV_SZT2 Developmental epileptic en- - - -
ior, seizure ¢.2507del(p.Ser836Metfs*95)  cephalopathy (#615476)
Het
LPV_SZT12
€.6553C>T(p.Arg2185Trp) Het
Fo6 M 0.4  Nystagmus, albinism LPV_OCA2 Oculocutaneous albinism None High Included
¢.1160C>T(p.Thr387Met) Het  (#203200)
Exon 20-24 deletion of OCA
Het
Fo7 F 16.6  Global DD, ID, autistic behav- P_arr 7q11.23 Williams syndrome (#194050)  Med Med Included
ior, stereotypical body rock- (72,589,903-74,392,574)x1
ing
Fo8 F 85  Myopathy, feeding difficulty PV_RYR1 ¢.5653G>T(p. Central core disease None Med Included
in infancy, lumbar hyperlor- ~ Glu1885%) (#255320)
dosis, waddling gait VUS_RYR1 ¢.7487C>T(p.Pro-
2496Leu)
Het (compound)
F09 F 9.9  Myopathy, feeding difficulty PV_RYR1 ¢.5653G>T(p. Central core disease None Med Included
in infancy, lumbar hyperlor- ~ Glu1885%) (#255320)
dosis, waddling gait VUS_RYR1 ¢.7487C>T(p.Pro-
2496Leu)
Het (compound)
F11 F 0.1 Premature birth, hemiverte-  LP_arr 16q11.2 16p11.2 deletion syndrome - - -
brae (#611913)
(29,580,020-30,177,240)x 1
F16 F 7.2 Global DD, ID, autistic behav- PV_FOXG1 Rett syndrome (#613454) Med Med Included
ior, stereotypical hand .256del(p.GIn86Argfs*106)
wringing, seizure Het, de novo
F19 F 0.1 Hearing impairment, umbili- P_arr 7q11.23 Williams syndrome (#194050)  Med Med Included
cal hernia (72,718,277-74,141,603)x1
F20 M 6.6  Global DD, ID, autistic behav- LP_arr 16p12.2 16p12.2 deletion syndrome - - -
ior (21581028_21946045)x 1 (#136570)
F21 F 5.5  Global DD, ID, ectopic kidney, LP_arr 16p12.2 16p12.2 deletion syndrome - - -
short stature (21,405327-21,816543)x1  (#136570)
F22 M 6 Hypotonia, feeding difficulty LP_arr15q11.2 Prader-Willi syndrome” Low Med Included
in infancy, cryptorchidism  (22,817,870-102,397,317)x2  (#176270)
hmz
Uniparental disomy
F23 F " Global DD, ID, autistic behav- PV_MECP2 Rett syndrome (#312750) Med Med Included

ior, stereotypical hand
wringing, seizure

€.880C>T(p.Arg294%) Het

HPO, human phenotype; OMIM, online Mendelian inheritance in Man; DD, developmental delay; FTT, failure to thrive; PV, pathogenic variant; Hom, homozy-
gous; Med, medium; ID, intellectual disability; LPV, likely pathogenic variant; SZT2, seizure threshold 2; P, pathogenic; VUS, variant of uncertain significance;

LP, likely pathogenic; hmz, hemizygous.

*Exclusive of craniofacial dysmorphism; *Confirmed by an additional methylation-specific test.
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nosis. These photos, along with pertinent clinical non-facial fea-
tures, were uploaded to the CLINIC application of the Face2Gene
(F2G) web interface (https: //www.face2gene.com/ ). The result-
ing analysis was then correlated with the molecular diagnosis. The
app presents the degree of similarity as a bar plot, indicating "high,"
"medium," or "low" levels. The study adhered to the Declaration of
Helsinki and received approval from the Institutional Review
Board of Chungbuk National University Hospital (2020-04-005).
Written informed consent was obtained from all patients” parents
for research purposes and publication, including photographs with
recognizable faces.

Frontal facial photographs of 23 children, suspected of having a
genetic syndrome with craniofacial dysmorphism, were available
for review (14 females; median age, 5.5 years; range, 0.1 to 16.6).
Genetic testing was conducted based on the clinical diagnosis
made by the clinician. Of these children, 12 received a genetic diag-
nosis through the first-tier test. The remaining 11 underwent sec-
ond-tier testing, with two of them receiving a final genetic diagno-
sis. The overall diagnostic yield of this study was 60.9% (14/23).
Table 1 presents the clinical characteristics and genetic findings of
the 14 patients who received a final genetic diagnosis. The cases
that made it to the top 10 lists are also indicated, along with the lev-
el of similarity in gestalt and feature. Nine out of the fourteen
(64.3%) patients had conditions that were correctly included in
the top 10 differential diagnoses by the F2G system. Among the
patients who matched the top 10 lists, the most common disease
was congenital myopathies (three cases), followed by Williams
syndrome (two cases), Rett syndrome (two cases), Prader-Willi
syndrome (one case), and oculocutaneous albinism (one case).
The majority of the syndromes (88.9%) were diagnosed with the
first-line genetic test, based on the clinician's clinical diagnosis. In-
terestingly, for the diseases included in the top 10 lists, the gestalt
similarity was only 55.6%. However, the non-facial phenotypic fea-
tures added by the clinician showed a similarity of more than a me-
dium level in all patients. Four children were diagnosed with syn-
dromes that did not make it to the top 10 differential diagnoses.
These included 16p11.2 deletion syndrome (two cases), seizure
threshold 2 (SZT2)-related early onset epileptic encephalopathy
(one case), and Gabriele-de Vries syndrome (one case).

This study illustrates the integration of facial analysis technology
into the practical clinical workflow for Korean children who are
strongly suspected of having a genetic syndrome. A definitive ge-
netic diagnosis was reached in 60.9% of children exhibiting distinct
facial features, following a systematic genetic work-up. Of these
children, 64.3% had conditions that were included in the top 10
syndromes suggested by F2G.

Since the first publication by Boehringer et al. [7] in 2011, sever-
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al studies have assessed facial phenotyping software. This software
uses patient photographs and automated computer tools to identi-
fy genetic syndromes [2,7-9]. F2G CLINIC, a deep learning-based
system, is a freely available online application for facial phenotyp-
ing in patients with genetic syndromes. It is widely used by geneti-
cists [2,5,10]. This software has been successfully validated for var-
ious genetic syndromes, including Cornelia de Lange syndrome,
Williams-Beuren syndrome, Noonan syndrome, and Down syn-
drome [11-14]. Following the report of Gurovich et al. [2] that
F2G successtully suggested the correct syndrome in 90.5% of cas-
es, several clinical studies have been conducted on various ethnic
groups. A German study involving 323 patients diagnosed with 17
different genetic syndromes demonstrated DeepGestalt’s high top
10 sensitivity at 91% [S]. In a smaller Turkish study, 48% (12/25
patients) were correctly matched within a suggested list of 30 dis-
eases [3]. A Canadian research group achieved a slightly lower di-
agnostic yield of 57% in its top 10 [4]. A recent Japanese study re-
ported a top 10 sensitivity rate of 86.6% (52/60 patients) in a rou-
tine clinical setting [6]. In the study by Porras et al. [15], the data-
set included 1,400 children with 128 genetic conditions, and the
average detection rate was 88%. However, the accuracy of these
tools has been found to be lower in Asian populations (82%) com-
pared to White (90%) and Hispanic populations (91%).

Our data demonstrated a relatively low sensitivity (64.3%), a
finding that is consistent with previous studies that reported incon-
sistent results in real clinical settings. This fluctuation in detection
rate can be attributed to several factors. First, facial dysmorphology
presents a significant challenge due to its variations according to
age, race, and ethnicity [11-14]. Porras et al. [15] suggested that
the lower-than-average accuracy in non-White populations could
be due to the limited number of corresponding patients in their
dataset. The development of race-specific facial phenotype models
could enhance the accuracy of this technology. Second, the effec-
tiveness of deep learning varies depending on the rarity of the ge-
netic syndrome itself. This makes it challenging to detect newly
identified rare genetic diseases, except for those that have been ex-
tensively studied previously. Indeed, certain syndromes consistent-
ly appear in the top suggested syndromes [4]. Our study under-
scores the limited utility of this technology in diagnosing various
rare diseases using advanced diagnostic tools such as CMA and
WGS. Third, the additional input of clinical features by clinicians is
extremely valuable. In our study, cases that matched the top 10 list
showed only a partial similarity of gestalt, but a 100% similarity
above the medium level in annotated phenotypic features. In in-
stances where a syndrome is suggested with a medium-high proba-
bility, clinicians should critically evaluate whether the suggestion
aligns with the patient's phenotype [ 16]. This underscores that the
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utility of this software is enhanced when clinicians supplement the
physical examination and patient history, rather than relying solely
on facial photography.

The small number of subjects included in our study is a limita-
tion. Thus, in cases where direct comparison of similarity is neces-
sary, it may be essential to directly compare the similarity bars. An-
other limitation is that we expressed the similarity of gestalts and
features in three broad levels, rather than using specific scores. This
approach means that even within the same level of similarity, there
can be significant differences in scores. Therefore, it may be neces-
sary to directly compare similarity bars when required.

In conclusion, our data underscore the utility of facial analysis
technology as an auxiliary tool in pediatric genetic clinics at the
point-of-care. We also underscore several considerations for en-
hancing the accuracy of this machine learning-based screening tool
for genetic diseases. By augmenting the quality and volume of
training datasets, computer-assisted pattern recognition platforms
can function as invaluable decision support tools, bolstering clini-

cians’ confidence in genetic diagnostics.
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